大汉网站群管理系统的系统架构
平台采用网站群数据服务总线(ESB),并通过消息中间件、数据适配器、数据路由、消息队列控制、数据聚合等技术,实现分布式独立网站群、独立数据库、独立服务器的数据整合,为全网网站群数据整合提供解决方案。
数据整合对象包括:
● 通过信息聚合器对统一标准的网站群实现全网数据集成
● 通过信息采集器实现异构门户网站的信息集成
● EAI数据集成平台向第三方应用系统提供统一的数据集成接口 消息队列控制器是网站群平台架构中的核心组件,它提供一个具有工业标准、安全、可靠的网站信息传输体系,控制和管理网站集群中的每个网站群,并在网站群组之间完成整个信息传输流程,保证数据的稳定可靠且无丢失、重发。
消息队列控制器是由信息传输系统、队列控制系统、网站寻址系统共同组成。
网站架构按照制作步骤分为硬架构和软架构。
一、硬架构
1、机房:在选择机房的时候,根据网站用户的地域分布,可以选择网通、电信等单机房或双机房。
2、带宽:预估网站每天的访问量,根据访问量选择合适的带宽,计算带宽大小主要涉及峰值流量和页面大小两个指标。
3、服务器:选择需要的服务器,如服务器,页面服务器,数据库服务器,应用服务器,日志服务器,对于访问量大点的网站而言,分离单独的服务器和页面服务器相当必要。
二、软架构
1、网站的框架:现在的PHP框架有很多选择,比如:CakePHP,Symfony,Zend Framework,根据创作团队对各个框架熟悉程度选择。
2、逻辑的分层
1)表现层:所有和表现相关的逻辑都应该被纳入表现层的范畴。
2)应用层:主要作用是定义用户可以做什么,并把操作结果反馈给表现层。
3)领域层:包含领域逻辑的层,就是告诉用户具体的操作流程的。
4)持久层:即数据库,保存领域模型保存到数据库,包含网站的架构和逻辑关系等。
扩展资料
网站的分类
1、根据网站所用编程语言分类:例如asp网站、php网站、jsp网站、Asp net网站等;
2、根据网站的用途分类:例如门户网站(综合网站)、行业网站、娱乐网站等;
3、根据网站的功能分类:例如单一网站(企业网站)、多功能网站(网络商城)等等。
4、根据网站的持有者分类:例如个人网站、商业网站、政府网站、教育网站等。
5、根据网站的商业目的分类:营利型网站(行业网站、论坛)、非营利性型网站(企业网站、政府网站、教育网站)。
—网站架构
—网站
通常老板花钱请我们架构网站的时候,会给我们提出一些目标,诸如网站每天要能承受100万PV的访问量等等。这时我们要预算一下大概需要多大的带宽,计算带宽大小主要涉及两个指标(峰值流量和页面大小),我们不妨在计算前先做出必要的假设:
第一:假设峰值流量是平均流量的5倍。
第二:假设每次访问平均的页面大小是100K字节左右。
如果100万PV的访问量在一天内平均分布的话,折合到每秒大约12次访问,如果按平均每次访问页面的大小是100K字节左右计算的话,这12次访问总计大约就是1200K字节,字节的单位是Byte,而带宽的单位是bit,它们之间的关系是1Byte = 8bit,所以1200K Byte大致就相当于9600K bit,也就是9Mbps的样子,实际情况中,我们的网站必须能在峰值流量时保持正常访问,所以按照假设的峰值流量算,真实带宽的需求应该在45Mbps 左右。
当然,这个结论是建立在前面提到的两点假设的基础上,如果你的实际情况和这两点假设有出入,那么结果也会有差别。 先看我们都需要哪些服务器:服务器,页面服务器,数据库服务器,应用服务器,日志服务器等等。
对于访问量大点的网站而言,分离单独的服务器和页面服务器相当必要,我们可以用lighttpd来跑服务器,用apache来跑页面服务器,当然也可以选择别的,甚至,我们可以扩展成很多台服务器和很多台页面服务器,并设置相关域名,如imgdomain和 wwwdomain,页面里的路径都使用绝对路径,如<img src=http://imgdomain/abcgif />,然后设置DNS轮循,达到最初级的负载均衡。当然,服务器多了就不可避免的涉及一个同步的问题,这个可以使用rsync软件来搞定。
数据库服务器是重中之重,因为网站的瓶颈问题十有八九是出在数据库身上。现在一般的中小网站多使用MySQL数据库,不过它的集群功能似乎还没有达到stable的阶段,所以这里不做评价。一般而言,使用MySQL数据库的时候,我们应该搞一个主从(一主多从)结构,主数据库服务器使用innodb表结构,从数据服务器使用myisam表结构,充分发挥它们各自的优势,而且这样的主从结构分离了读写操作,降低了读操作的压力,甚至我们还可以设定一个专门的从服务器做备份服务器,方便备份。不然如果你只有一台主服务器,在大数据量的情况下,mysqldump基本就没戏了,直接拷贝数据文件的话,还得先停止数据库服务再拷贝,否则备份文件会出错。但对于很多网站而言,即使数据库服务仅停止了一秒也是不可接受的。如果你有了一台从数据库服务器,在备份数据的时候,可以先停止服务(slave stop)再备份,再启动服务(slave start)后从服务器会自动从主服务器同步数据,一切都没有影响。但是主从结构也是有致命缺点的,那就是主从结构只是降低了读操作的压力,却不能降低写操作的压力。
为了适应更大的规模,可能只剩下最后这招了:横向/纵向分割数据库。所谓横向分割数据库,就是把不同的表保存到不同的数据库服务器上,比如说 用户表保存在A数据库服务器上,文章表保存在B数据库服务器上,当然这样的分割是有代价的,最基本的就是你没法进行LEFT JOIN之类的操作了。所谓纵向分割数据库,一般是指按照用户标识(user_id)等来划分数据存储的服务器,比如说:我们有5台数据库服务器,那么 “user_id % 5 + 1”等于1的就保存到1号服务器,等于2的就保存到2号服务器,以此类推,纵向分隔的原则有很多种,可以视情况选择。不过和横向分割数据库一样,纵向分割数据库也是有代价的,最基本的就是我们在进行如COUNT, SUM等汇总操作的时候会麻烦很多。综上所述,数据库服务器的解决方案一般视情况往往是一个混合的方案,以其发挥各种方案的优势,有时候还需要借助memcached之类的第三方软件,以便适应更大访问量的要求。
如果有专门的应用服务器来跑PHP脚本是最合适不过的了,那样我们的页面服务器只保存静态页面就可以了,可以给应用服务器设置一些诸如appdomain之类的域名来和页面服务器加以区别。对于应用服务器,我还是更倾向于使用prefork模式的apache,配上必要的xcache之类的PHP缓存软件,加载模块要越少越好,除了mod_rewrite等必要的模块,不必要的东西统统舍弃,尽量减少httpd进程的内存消耗,而那些服务器,页面服务器等静态内容就可以使用lighttpd或者tux来搞,充分发挥各种服务器的特点。
如果条件允许,独立的日志服务器也是必要的,一般小网站的做法都是把页面服务器和日志服务器合二为一了,在凌晨访问量不大的时候cron运行前一天的日志计算,不过如果你使用awstats之类的日志分析软件,对于百万级访问量而言,即使按天归档,也会消耗很多时间和服务器资源去计算,所以分离单独的日志服务器还是有好处的,这样不会影响正式服务器的工作状态。
有很多人不了解如何设计网站架构,那么今天小编就在这里给大家分享一点我的小经验,希望可以给你们带来帮助。
方法/步骤
一般说来,除了当前的系统功能需求外,软件架构还需要关注性能、可用性、伸缩性、扩展性和安全性这 5 个架构要素
架构设计过程中需要平衡这 5 个要素之间的关系以实现需求和架构目标,也可以通过考察这些架构要素来衡量一个软件架构设计的优劣,判断其是否满足期望。
性能,性能是网站的一个重要指标,除非是没得选择,否则用户无法忍受一个响应缓慢的网站。
一个打开缓慢的网站会导致严重的用户流失,很多时候网站性能问题是网站架构升级优化的触发器。
可以说性能是网站架构设计的一个重要方面,任何软件架构设计方案都必须考虑可能会带来的性能问题。
在网站有很多用户高并发请求的情况下,可以将多台应用服务器组成一个集群共同对外服务,提高整体处理能力,改善性能。在代码层面,也可以通过使用多线程、改善内存管理等手段优化性能。
衡量网站性能有一系列指标,重要的有响应时间、TPS、系统性能计数器等,通过测试这些指标以确定系统设计是否达到目标。
最近对离线数仓体系进行了扩容和架构改造,也算是一波三折,出了很多小插曲,有一些改进点对我们来说也是真空地带,通过对比和模拟压测总算是得到了预期的结果,这方面尤其值得一提的是郭运凯同学的敬业,很多前置的工作,优化和应用压测的工作都是他完成的。
整体来说,整个事情的背景是因为服务器硬件过保,刚好借着过保服务器替换的机会来做集群架构的优化和改造。
1集群架构改造的目标
在之前也总结过目前存在的一些潜在问题,也是本次部署架构改进的目标:
1)之前 的GP segment数量设计过度 ,因为资源限制,过多考虑了功能和性能,对于集群的稳定性和资源平衡性考虑有所欠缺,在每个物理机节点上部署了10个Primary,10个Mirror,一旦1个服务器节点不可用,整个集群几乎无法支撑业务。
2)GP集群 的存储资源和性能的平衡不够 ,GP存储基于RAID-5,如果出现坏盘,磁盘重构的代价比较高,而且重构期间如果再出现坏盘,就会非常被动,而且对于离线数仓的数据质量要求较高,存储容量相对不是很大,所以在存储容量和性能的综合之上,我们选择了RAID-10。
3)集 群的异常场景的恢复需要完善, 集群在异常情况下(如服务器异常宕机,数据节点不可用,服务器后续过保实现节点滚动替换)的故障恢复场景测试不够充分,导致在一些迁移和改造中,相对底气不足,存在一些知识盲区。
4)集群版本过 低 ,功能和性能上存在改进空间。毕竟这个集群是4年前的版本,底层的PG节点的版本也比较旧了,在功能上和性能上都有一定的期望,至少能够与时俱进。
5)操作系统版本升 级 ,之前的操作系统是基于CentOS6,至少需要适配CentOS 7 。
6)集群TPCH 压测验收 ,集群在完成部署之后,需要做一次整体的TPCH压测验收,如果存在明显的问题需要不断调整配置和架构,使得达到预期的性能目标。
此外在应用层面也有一些考虑,总而言之,是希望能够解决绝大多数的痛点问题,无论是在系统层面,还是应用层面,都能上一个台阶。
2集群规划设计的选型和思考
明确了目标,就是拆分任务来规划设计了,在规划设计方面主要有如下的几个问题:
1)Greenplum的版本选择 ,目前有两个主要的版本类别,一个是开源版(Open Source distribution)和Pivotal官方版,它们的其中一个差异就是官方版需要注册,签署协议,在此基础上还有GPCC等工具可以用,而开源版本可以实现源码编译或者rpm安装,无法配置GPCC。综合来看,我们选择了 开源版本的6162 ,这其中也询问了一些行业朋友,特意选择了几个涉及稳定性bug修复的版本。
2)数据集市的技术选型 ,在数据集市的技术选型方面起初我是比较坚持基于PostgreSQL的模式,而业务侧是希望对于一些较为复杂的逻辑能够通过GP去支撑,一来二去之后,加上我咨询了一些行业朋友的意见,是可以选择基于GP的方案,于是我们就抱着试一试的方式做了压测,所以数据仓库和和数据集市会是两个不同规模体量的GP集群来支撑。
3)GP的容量规划 ,因为之前的节点设计有些过度,所以在数量上我们做了缩减,每台服务器部署12个segment节点,比如一共12台服务器,其中有10台服务器是Segment节点,每台上面部署了6个Primary,6个Mirror,另外2台部署了Master和Standby,就是即(6+6)10+2,整体的配置情况类似下面的模式。
4)部署架构方案选型 ,部署架构想起来比较容易,但是落实起来有很多的考虑细节,起初考虑GP的Master和Standby节点如果混用还是能够节省一些资源,所以设计的数据仓库和数据集市的部署架构是这样考虑的,但是从走入部署阶段之后,很快就发现这种交叉部署的模式是不可行的,或者说有一些复杂度。
除此之外,在单个GP集群的部署架构层面,还有4类方案考虑。
方案1 :Master,Standby和segment混合部署
方案2 :Master,Standby和segment独立部署,整个集群的节点数会少一些
方案3 :Segment独立部署,Master,Standby虚拟机部署
方案4 :最小化单节点集群部署(这是数据集市最保底的方案)
这方面存在较大的发挥空间,而且总体来说这种验证磨合的成本也相对比较高,实践给我上了一课, 越是想走捷径,越是会让你走一些弯路 ,而且有些时候的优化其实我也不知道改怎么往下走,感觉已经无路可走,所以上面这4种方案其实我们都做了相关的测试和验证。
3集群架构的详细设计和实践
1)设计详细的部署架构图
在整体规划之上,我设计了如下的部署架构图,每个服务器节点有6个Primary,6个Mirror,服务器两两映射。
2)内核参数优化
按照官方文档的建议和具体的配置情况,我们对内核参数做了如下的配置:
vmswappiness=10
vmzone_reclaim_mode = 0
vmdirty_expire_centisecs = 500
vmdirty_writeback_centisecs = 100
vmdirty_background_ratio = 0 # See System Memory
vmdirty_ratio = 0
vmdirty_background_bytes = 1610612736
vmdirty_bytes = 4294967296
vmmin_free_kbytes = 3943084
vmovercommit_memory=2
kernelsem = 500 2048000 200 4096
4集群部署步骤
1)首先是配置/etc/hosts,需要把所有节点的IP和主机名都整理出来。
2)配置用户,很常规的步骤
groupadd gpadmin
useradd gpadmin -g gpadmin
passwd gpadmin
3)配置sysctlconf和资源配置
4)使用rpm模式安装
# yum install -y apr apr-util bzip2 krb5-devel zip
# rpm -ivh open-source-greenplum-db-6162-rhel7-x86_64rpm
5)配置两个host文件,也是为了后面进行统一部署方便,在此建议先开启gpadmin的sudo权限,可以通过gpssh处理一些较为复杂的批量操作
6)通过gpssh-exkeys来打通ssh信任关系,这里需要吐槽这个ssh互信,端口还得是22,否则处理起来很麻烦,需要修改/etc/ssh/sshd_config文件
gpssh-exkeys -f hostlist
7)较为复杂的一步是打包master的Greenplum-db-6162软件,然后分发到各个segment机器中,整个过程涉及文件打包,批量传输和配置,可以借助gpscp和gpssh,比如gpscp传输文件,如下的命令会传输到/tmp目录下
gpscp -f /usr/local/greenplum-db/conf/hostlist /tmp/greenplum-db-6162targz =:/tmp
或者说在每台服务器上面直接rpm -ivh安装也可以。
8)Master节点需要单独配置相关的目录,而Segment节点的目录可以提前规划好,比如我们把Primary和Mirror放在不同的分区。
mkdir -p /data1/gpdata/gpdatap1
mkdir -p /data1/gpdata/gpdatap2
mkdir -p /data2/gpdata/gpdatam1
mkdir -p /data2/gpdata/gpdatam2
9)整个过程里最关键的就是gpinitsystem_config配置了,因为Segment节点的ID配置和命名,端口区间都是根据一定的规则来动态生成的,所以对于目录的配置需要额外注意。
10)部署GP集群最关键的命令是
gpinitsystem -c gpinitsystem_config -s standby_hostname
其中文件gpinitsystem_config的主要内容如下:
MASTER_HOSTNAME=xxxx
declare -a DATA_DIRECTORY=(/data1/gpdata/gpdatap1 /data1/gpdata/gpdatap2 /data1/gpdata/gpdatap3 /data1/gpdata/gpdatap4 /data1/gpdata/gpdatap5 /data1/gpdata/gpdatap6)
TRUSTED_SHELL=ssh
declare -a MIRROR_DATA_DIRECTORY=(/data2/gpdata/gpdatam1 /data2/gpdata/gpdatam2 /data2/gpdata/gpdatam3 /data2/gpdata/gpdatam4 /data2/gpdata/gpdatam5 /data2/gpdata/gpdatam6)
MACHINE_LIST_FILE=/usr/local/greenplum-db/conf/seg_hosts
整个过程大约5分钟~10分钟以内会完成,在部署过程中建议要查看后端的日志查看是否有异常,异常情况下的体验不是很好,可能会白等。
5集群部署问题梳理
集群部署中还是有很多细节的问题,太基础的就不提了,基本上就是配置,目录权限等问题,我提另外几个:
1) 资源配置问题 ,如果/etc/security/limitsconf的资源配置不足会在安装时有如下的警告:
2) 网络问题 ,集群部署完成后可以正常操作,但是在查询数据的时候会抛出错误,比如SQL是这样的,看起来很简单:select count() from customer,但是会抛出如下的错误:
这个问题的主要原因还是和防火墙配置相关,其实不光需要配置INPUT的权限,还需要配置OUTPUT的权限。
对于数据节点可以开放略大的权限,如:
入口的配置:
-A INPUT -p all -s xxxxx -j ACCEPT
出口的配置:
-A OUTPUT -p all -s xxxxx -j ACCEPT
3)网络配置问题 ,这个问题比较诡异的是,报错和上面是一样的,但是在排除了防火墙配置后,select count() from customer;这样的语句是可以执行的,但是执行的等待时间较长,比如表lineitem这表比较大,过亿的数据量,,在10个物理节点时,查询响应时间是10秒,但是4个物理节点,查询响应时间是在90秒,总体删感觉说不过去。
为了排查网络问题,使用gpcheckperf等工具也做过测试,4节点和10节点的基础配置也是相同的。
gpcheckperf -f /usr/local/greenplum-db/conf/seg_hosts -r N -d /tmp
$ cat /etc/hosts
127001 localhost localhostlocaldomain localhost4 localhost4localdomain4
::1 localhost localhostlocaldomain localhost6 localhost6localdomain6
#127001 test-dbs-gp-128-230
xxxxx128238 test-dbs-gp-svr-128-238
xxxxx128239 test-dbs-gp-svr-128-239
其中127001的这个配置在segment和Master,Standby混部的情况是存在问题的,修正后就没问题了,这个关键的问题也是郭运凯同学发现的。
5集群故障恢复的测试
集群的故障测试是本次架构设计中的重点内容,所以这一块也是跃跃欲试。
整体上我们包含两个场景,服务器宕机修复后的集群恢复和服务器不可用时的恢复方式。
第一种场景相对比较简单,就是让Segment节点重新加入集群,并且在集群层面将Primary和Mirror的角色互换,而第二种场景相对时间较长一些,主要原因是需要重构数据节点,这个代价基本就就是PG层面的数据恢复了,为了整个测试和恢复能够完整模拟,我们采用了类似的恢复方式,比如宕机修复使用了服务器重启来替代,而服务器不可用则使用了清理数据目录,类似于一台新配置机器的模式。
1)服务器宕机修复后集群恢复
select from gp_segment_configuration where status!='u';
gprecoverseg -o /recov
gprecoverseg -r
select from gp_segment_configuration where status='u'
2)服务器不可用时集群恢复
重构数据节点的过程中,总体来看网络带宽还是使用很充分的。
select from gp_segment_configuration where status='u'
select from gp_segment_configuration where status='u' and role!=preferred_role;
gprecoverseg -r
select from gp_segment_configuration where status='u' and role!=preferred_role;
经过测试,重启节点到数据修复,近50G数据耗时3分钟左右
6集群优化问题梳理
1)部署架构优化和迭代
对于优化问题,是本次测试中尤其关注,而且争议较多的部分。
首先在做完初步选型后,数仓体系的部署相对是比较顺利的,采用的是第一套方案。
数据集市的集群部分因为节点相对较少,所以就选用了第二套方案
实际测试的过程,因为配置问题导致TPCH的结果没有达到预期。
所以这个阶段也产生了一些疑问和怀疑,一种就是折回第一种方案,但是节点数会少很多,要不就是第三种采用虚拟机的模式部署,最保底的方案则是单节点部署,当然这是最牵强的方案。
这个阶段确实很难,而在上面提到的修复了配置之后,集群好像突然开悟了一般,性能表现不错,很快就完成了100G和1T数据量的TPCH测试。
在后续的改造中,我们也尝试了第三套方案,基于虚拟机的模式,通过测试发现,远没有我们预期的那么理想,在同样的数据节点下,Master和Standby采用物理机和虚拟机,性能差异非常大,这个是出乎我们预料的。比如同样的SQL,方案3执行需要2秒,而方案2则需要80秒,这个差异我们对比了很多指标,最后我个人理解差异还是在网卡部分。
所以经过对比后,还是选择了方案2的混合部署模式。
2)SQL性能优化的分析
此外整个过程的TPCH也为集群的性能表现提供了参考。比如方案2的混合部署模式下,有一条SQL需要18秒,但是相比同类型的集群,可能就只需要2秒钟左右,这块显然是存在问题的。
在排除了系统配置,硬件配置的差异之后,经典的解决办法还是查看执行计划。
性能较差的SQL执行计划:
# explain analyze select count()from customer;
QUERY PLAN
Aggregate (cost=00043100 rows=1 width=8) (actual time=2479291624792916 rows=1 loops=1)
-> Gather Motion 36:1 (slice1; segments: 36) (cost=00043100 rows=1 width=1) (actual time=325516489394 rows=150000000 loops=1)
-> Seq Scan on customer (cost=00043100 rows=1 width=1) (actual time=07801267878 rows=4172607 loops=1)
Planning time: 4466 ms
(slice0) Executor memory: 680K bytes
(slice1) Executor memory: 218K bytes avg x 36 workers, 218K bytes max (seg0)
Memory used: 2457600kB
Optimizer: Pivotal Optimizer (GPORCA)
Execution time: 24832611 ms
(9 rows)
Time: 24892500 ms
性能较好的SQL执行计划:
# explain analyze select count()from customer;
QUERY PLAN
Aggregate (cost=00084208 rows=1 width=8) (actual time=15193111519311 rows=1 loops=1)
-> Gather Motion 36:1 (slice1; segments: 36) (cost=00084208 rows=1 width=8) (actual time=6347871519214 rows=36 loops=1)
-> Aggregate (cost=00084208 rows=1 width=8) (actual time=14732961473296 rows=1 loops=1)
-> Seq Scan on customer (cost=00083433 rows=4166667 width=1) (actual time=0758438319 rows=4172607 loops=1)
Planning time: 5033 ms
(slice0) Executor memory: 176K bytes
(slice1) Executor memory: 234K bytes avg x 36 workers, 234K bytes max (seg0)
Memory used: 2457600kB
Optimizer: Pivotal Optimizer (GPORCA)
Execution time: 1543611 ms
(10 rows)
Time: 1549324 ms
很明显执行计划是被误导了,而误导的因素则是基于统计信息,这个问题的修复很简单:
analyze customer;
但是深究原因,则是在压测时,先是使用了100G压测,压测完之后保留了原来的表结构,直接导入了1T的数据量,导致执行计划这块没有更新。
3)集群配置优化
此外也做了一些集群配置层面的优化,比如对缓存做了调整。
gpconfig -c statement_mem -m 2457600 -v 2457600
gpconfig -c gp_vmem_protect_limit -m 32000 -v 32000
7集群优化数据
最后来感受下集群的性能:
1)10个物理节点,(6+6)10+2
tpch_1t=# iming on
Timing is on
tpch_1t=# select count()from customer;
count
-----------
150000000
(1 row)
Time: 1235801 ms
tpch_1t=# select count()from lineitem;
count
------------
5999989709
(1 row)
Time: 10661756 ms
2)6个物理节点,(6+6)6
# select count()from customer;
count
-----------
150000000
(1 row)
Time: 1346833 ms
# select count()from lineitem;
count
------------
5999989709
(1 row)
Time: 18145092 ms
3)4个物理节点,(6+6)4
# select count()from customer;
count
-----------
150000000
(1 row)
Time: 1531621 ms
# select count()from lineitem;
count
------------
5999989709
(1 row)
Time: 25072501 ms
4)TPCH在不通架构模式下的性能比对 ,有19个查询模型,有个别SQL逻辑过于复杂暂时忽略,也是郭运凯同学整理的列表。
在1T基准下的基准测试表现:
0条评论