iOS 和 Android 的后台推送原理各是什么?有什么区别
先说原理。
iOS 的推送:就是 Apple 官方的 APNs (Apple Push Notification service)。
Android 的推送:Google 官方的是 GCM (Google Cloud Messaging)。
本质上,APNs 与 GCM 是类似的技术实现原理:即系统层有一个常驻的 TCP 长连接,一直保持的长连接,即使手机休眠的时候也在保持的长连接。
这里对于大部分人来说,最不理解的就是,休眠时候都保持在那里的 TCP 长连接,不会耗电很厉害么?
答案是:不会。这是手机的设计来做到的。TCP长连接有个心跳的时间,在国外可以很长比如30分钟,在国内则因为网络环境复杂一般10分钟。客户端发起的心跳,会短暂地消耗手机电能,但在这个心跳间隔期间,则消耗电能是很少的。当在心跳期间服务器端有推送信息过来时,客户端可以收到并做处理。
这里有篇文章以 Android 为例做原理解释:http://blogjpushcn/indexphp/jpush_wireless_push_principle/
再说 APNs 的设计成功处。
iOS 为了真正地为用户体验负责,不允许应用在后台活动。有了这个限制,但是对于终端设备,应用又是有必要“通知”到达用户的,随时与用户主动沟通起来的(典型的如聊天应用)。
这就是 APNs 的逻辑所在:iOS 自己做个长驻后台保持连接。所有应用,有必要(申请)并且被允许(用户可以改设置)的话,可以通过 APNs 中转到达用户。
这样就完善了!
有可能很多人没有真正地体会到 iOS 不允许后台应用的好处。我是 Android 开发人员,Android 手机上一般只保留几个常用的应用,不常用就卸载。但是我的 iPhone / iPad 上则是,除非空间不足,一般不会删除应用。
Android 就像 Windows,你要真的很费心去维护:有软件在干背后干坏事么?设备又给拖慢了,要清理。要考虑杀毒了。。。
Android 因为后台可以长驻,尤其是国内的 Android 的手机上 Google自家的推送服务 GCM 处于基本不可用的状态。所以,各App各显神通。聊天类应用的话,大多数直接借用 XMPP 规范里的一些成果。少量如微信有IM底子的,自己开发协议。这些在实现原理上与 APNs / GCM 没有本质的区别,但有一定的技术门槛。而大多数普遍应用,要使用推送的话,则使用轮询的方式简单实现。
其实,国外如 Urban Airship 自己实现了 Android 上的第三方提供的推送平台。近期国内如极光推送也实现了第三方的推送平台(技术与微信、GCM、APNs类似)。理论上,如果一个 Android 设备上多款应用都使用极光推送这种第三方推送平台的话,也可以如 APNs 一样达到节省电量、流量消耗的效果。
关于 WebSocket ,维基百科是这样介绍的:
WebSocket 协议在2008年诞生,2011年成为国际标准,现在几乎所有浏览器都已经支持了。它的最大特点就是,服务器可以主动向客户端推送信息,客户端也可以主动向服务器发送信息,是真正的双向平等对话,属于服务器推送技术的一种。
简单来说, WebSocket 减少了客户端与服务器端建立连接的次数,减轻了服务器资源的开销,只需要完成一次 HTTP 握手。整个通讯过程是建立在一次连接/状态中,也就避免了 HTTP 的非状态性,服务端会一直与客户端保持连接,直到双方发起关闭请求,同时由原本的客户端主动询问,转换为服务器有信息的时候推送。所以,它能做实时通信(聊天室、直播间等),其他特点还包括:
现象描述: 在 https 协议下访问网站时,客户端浏览器控制面板异常信息:
这种情况,毫无疑问我们就需要使用 wss:// 安全协议了,需要将客户端浏览器获取的页面中 webscoket 的形式由 ws:// 改为 wss://
WebSocket 可以使用 ws 或 wss 来作为 统一资源标志符 ,类似于 HTTP 或 HTTPS 。其中 , wss 表示在 TLS 之上的 WebSocket ,相当于 HTTPS 。默认情况下, WebSocket 的 ws 协议基于 Http 的 80 端口;当运行在 TLS 之上时, wss 协议默认是基于 Http 的 443 端口。说白了, wss 就是 ws 基于 SSL 的安全传输,与 HTTPS 一样样的道理。所以,如果你的网站是 HTTPS 协议的,那你就不能使用 ws:// 了,浏览器会 block 掉连接,和 HTTPS 下不允许 HTTP 请求一样。
踩着年末的尾巴,提前布局来年,为来年的工作做个好的铺垫,所以就开始了面试历程,因为项目中使用到了 WebSocket ,面试官在深挖项目经验的时候,也难免提到 WebSocket 相关的知识点,因为之前并没有考虑这么深,所以,回答的还是有所欠缺,因此,赶紧趁热再熟悉熟悉,也借此机会,整理出来供大家咀嚼,每个项目都有其值得挖掘的闪光点,要用有爱的眼睛去发现。
WebSocket 是一种在单个TCP连接上进行全双工通信的协议。 WebSocket 使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据。
在 WebSocket API 中,浏览器和服务器只需要完成一次握手,两者之间就直接可以创建持久性的连接, 并进行双向数据传输。(维基百科)
WebSocket 本质上一种计算机网络应用层的协议,用来弥补 http 协议在持久通信能力上的不足。
WebSocket 协议在2008年诞生,2011年成为国际标准。现在最新版本浏览器都已经支持了。
它的最大特点就是,服务器可以主动向客户端推送信息,客户端也可以主动向服务器发送信息,是真正的双向平等对话,属于服务器推送技术的一种。
WebSocket 的其他特点包括:
我们已经有了 HTTP 协议,为什么还需要另一个协议?它能带来什么好处?
因为 HTTP 协议有一个缺陷:通信只能由客户端发起,不具备服务器推送能力。
举例来说,我们想了解查询今天的实时数据,只能是客户端向服务器发出请求,服务器返回查询结果。HTTP 协议做不到服务器主动向客户端推送信息。
这种单向请求的特点,注定了如果服务器有连续的状态变化,客户端要获知就非常麻烦。我们只能使用"轮询":每隔一段时候,就发出一个询问,了解服务器有没有新的信息。最典型的场景就是聊天室。轮询的效率低,非常浪费资源(因为必须不停连接,或者 HTTP 连接始终打开)。
在 WebSocket 协议出现以前,创建一个和服务端进双通道通信的 web 应用,需要依赖HTTP协议,进行不停的轮询,这会导致一些问题:
http 协议本身是没有持久通信能力的,但是我们在实际的应用中,是很需要这种能力的,所以,为了解决这些问题, WebSocket 协议由此而生,于2011年被IETF定为标准RFC6455,并被RFC7936所补充规范。并且在 HTML5 标准中增加了有关 WebSocket 协议的相关 api ,所以只要实现了 HTML5 标准的客户端,就可以与支持 WebSocket 协议的服务器进行全双工的持久通信了。
WebSocket 与 HTTP 的关系图:
下面一张图说明了 HTTP 与 WebSocket 的主要区别:
不同点:
与http协议一样, WebSocket 协议也需要通过已建立的TCP连接来传输数据。具体实现上是通过http协议建立通道,然后在此基础上用真正 WebSocket 协议进行通信,所以WebSocket协议和http协议是有一定的交叉关系的。首先, WebSocket 是一个持久化的协议,相对于 HTTP 这种非持久的协议来说。简单的举个例子吧,用目前应用比较广泛的 PHP 生命周期来解释。
HTTP 的生命周期通过 Request 来界定,也就是一个 Request 一个 Response ,那么在 HTTP10 中,这次 HTTP 请求就结束了。
在 HTTP11 中进行了改进,使得有一个 keep-alive,也就是说,在一个 HTTP 连接中,可以发送多个 Request,接收多个 Response。但是请记住 Request = Response, 在 HTTP 中永远是这样,也就是说一个 Request 只能有一个 Response。而且这个 Response 也是被动的,不能主动发起。首先 WebSocket 是基于 HTTP 协议的,或者说借用了 HTTP 协议来完成一部分握手。
首先我们来看个典型的 WebSocket 握手
熟悉 HTTP 的童鞋可能发现了,这段类似 HTTP 协议的握手请求中,多了这么几个东西。
这个就是 WebSocket 的核心了,告诉 Apache 、 Nginx 等服务器:注意啦,我发起的请求要用 WebSocket 协议,快点帮我找到对应的助理处理~而不是那个老土的 HTTP 。
这里开始就是 HTTP 最后负责的区域了,告诉客户,我已经成功切换协议啦~
依然是固定的,告诉客户端即将升级的是 WebSocket 协议,而不是 mozillasocket ,lurnarsocket 或者 shitsocket 。
然后, Sec-WebSocket-Accept 这个则是经过服务器确认,并且加密过后的 Sec-WebSocket-Key 。服务器:好啦好啦,知道啦,给你看我的 ID CARD 来证明行了吧。后面的, Sec-WebSocket-Protocol 则是表示最终使用的协议。至此,HTTP 已经完成它所有工作了,接下来就是完全按照 WebSocket 协议进行了。总结, WebSocket 连接的过程是:
优点:
缺点:
心跳就是客户端定时的给服务端发送消息,证明客户端是在线的, 如果超过一定的时间没有发送则就是离线了。
当客户端第一次发送请求至服务端时会携带唯一标识、以及时间戳,服务端到db或者缓存去查询改请求的唯一标识,如果不存在就存入db或者缓存中, 第二次客户端定时再次发送请求依旧携带唯一标识、以及时间戳,服务端到db或者缓存去查询改请求的唯一标识,如果存在就把上次的时间戳拿取出来,使用当前时间戳减去上次的时间, 得出的毫秒秒数判断是否大于指定的时间,若小于的话就是在线,否则就是离线;
通过查阅资料了解到 nginx 代理的 websocket 转发,无消息连接会出现超时断开问题。网上资料提到解决方案两种,一种是修改nginx配置信息,第二种是 websocket 发送心跳包。下面就来总结一下本次项目实践中解决的 websocket 的断线 和 重连 这两个问题的解决方案。主动触发包括主动断开连接,客户端主动发送消息给后端
主动断开连接,根据需要使用,基本很少用到。
下面主要讲一下客户端也就是前端如何实现心跳包:
首先了解一下心跳包机制
跳包之所以叫心跳包是因为:它像心跳一样每隔固定时间发一次,以此来告诉服务器,这个客户端还活着。事实上这是为了保持长连接,至于这个包的内容,是没有什么特别规定的,不过一般都是很小的包,或者只包含包头的一个空包。
在 TCP 的机制里面,本身是存在有心跳包的机制的,也就是 TCP 的选项: SO_KEEPALIVE 。系统默认是设置的2小时的心跳频率。但是它检查不到机器断电、网线拔出、防火墙这些断线。而且逻辑层处理断线可能也不是那么好处理。一般,如果只是用于保活还是可以的。
心跳包一般来说都是在逻辑层发送空的 echo 包来实现的。下一个定时器,在一定时间间隔下发送一个空包给客户端,然后客户端反馈一个同样的空包回来,服务器如果在一定时间内收不到客户端发送过来的反馈包,那就只有认定说掉线了。
在长连接下,有可能很长一段时间都没有数据往来。理论上说,这个连接是一直保持连接的,但是实际情况中,如果中间节点出现什么故障是难以知道的。更要命的是,有的节点(防火墙)会自动把一定时间之内没有数据交互的连接给断掉。在这个时候,就需要我们的心跳包了,用于维持长连接,保活。
心跳检测步骤:
针对这种异常的中断解决方案就是处理重连,下面我们给出的重连方案是使用js库处理:引入 reconnecting-websocketminjs ,ws建立链接方法使用js库api方法:
断网监测支持使用js库: offlineminjs
以上方案,只是抛砖引玉,如果大家有更好的解决方案欢迎评论区分享交流。
WebSocket 是为了在 web 应用上进行双通道通信而产生的协议,相比于轮询HTTP请求的方式,WebSocket 有节省服务器资源,效率高等优点。WebSocket 中的掩码是为了防止早期版本中存在中间缓存污染攻击等问题而设置的,客户端向服务端发送数据需要掩码,服务端向客户端发送数据不需要掩码。WebSocket 中 Sec-WebSocket-Key 的生成算法是拼接服务端和客户端生成的字符串,进行SHA1哈希算法,再用base64编码。WebSocket 协议握手是依靠 HTTP 协议的,依靠于 HTTP 响应101进行协议升级转换。
0条评论