如何看CPU的快慢?,第1张

CPU的性能主要体现在其运行程序的速度上。影响运行速度的性能指标包括CPU的工作频率、Cache容量、指令系统和逻辑结构等参数。

主频

主频也叫时钟频率,单位是兆赫(MHz)或千兆赫(GHz),用来表示CPU的运算、处理数据的速度。通常,主频越高,CPU处理数据的速度就越快。

CPU的主频=外频×倍频系数。主频和实际的运算速度存在一定的关系,但并不是一个简单的线性关系。 所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。

在Intel的处理器产品中,也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟266 GHz至强(Xeon)/Opteron一样快,或是15 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线、总线等各方面的性能指标。

外频

外频是CPU的基准频率,单位是MHz。CPU的外频决定着整块主板的运行速度。通俗地说,在台式机中,所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。

但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。

绝大部分电脑系统中外频与主板前端总线不是同步速度的,而外频与前端总线(FSB)频率又很容易被混为一谈。

总线频率

AMD 羿龙II X4 955黑盒

前端总线(FSB)是将CPU连接到北桥芯片的总线。前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。

有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是64GB/秒。

外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。

也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一亿次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是100MHz×64bit÷8bit/Byte=800MB/s。

倍频系数

倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高主频而得到高倍频的CPU就会出现明显的“瓶颈”效应-CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。

一般除了工程样版的Intel的CPU都是锁了倍频的,少量的如Intel酷睿2核心的奔腾双核E6500K和一些至尊版的CPU不锁倍频,而AMD之前都没有锁,AMD推出了黑盒版CPU(即不锁倍频版本,用户可以自由调节倍频,调节倍频的超频方式比调节外频稳定得多)。

缓存

缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。

实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。

L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32-256KB。

L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。

L2高速缓存容量也会影响CPU的性能,原则是越大越好,以前家庭用CPU容量最大的是512KB,笔记本电脑中也可以达到2M,而服务器和工作站上用CPU的L2高速缓存更高,可以达到8M以上。

L3 Cache(三级缓存),分为两种,早期的是外置,内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。

而在服务器领域增加L3缓存在性能方面仍然有显著的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。

你好,可能是你当地的网络不太好,你可以尝试一下,开关飞行模式,

或者换一个网比较好的地方。还有一种情况可能是你欠费了也是没有4G的。关机重启一下如果还是不能回到4g,建议你咨询一下客服或者到售后去检测一下。

扩展资料

iPhone是美国苹果公司研发的智能手机系列,搭载苹果公司研发的iOS操作系统。

第一代iPhone于2007年1月9日由苹果公司前首席执行官史蒂夫·乔布斯发布,并在2007年6月29日正式发售。

如果是P4C、EE和PD820,就是14200=2800GHz的,也就是倍频乘以外频就等于主频,不同的U外频和倍频都不同,以前的赛羊4是100的外频,现在的赛羊D是133的外频,P4C、EE和PD820都是200的外频,现在的扣肉2E6300是266的外频和7的倍频,AMD的以前的U里面有133、166两种,现在的AM2的U一般外频是200,说了这么多应该明白点了吧

主频=外频×倍频系数 1主频: CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度 2外频: 在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的外频都是被锁住的)。 目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态 3前端总线(FSB)频率: 前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是64GB/秒。 5倍频系数: 倍频系数是指CPU主频与外频之间的相对比例关系。在相同的外频下,倍频越高CPU的频率也越高。但实际上,在相同外频的前提下,高倍频的CPU本身意义并不大。这是因为CPU与系统之间数据传输速度是有限的,一味追求高倍频而得到高主频的CPU就会出现明显的“瓶颈”效应—CPU从系统中得到数据的极限速度不能够满足CPU运算的速度。一般除了工程样版的Intel的CPU都是锁了倍频的,而AMD之前都没有锁。 4外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是 100MHz×64bit÷8bit/Byte=800MB/s。 5缓存 缓存大小也是CPU的重要指标之一,而且缓存的结构和大小对CPU速度的影响非常大,CPU内缓存的运行频率极高,一般是和处理器同频运作,工作效率远远大于系统内存和硬盘。实际工作时,CPU往往需要重复读取同样的数据块,而缓存容量的增大,可以大幅度提升CPU内部读取数据的命中率,而不用再到内存或者硬盘上寻找,以此提高系统性能。但是由于CPU芯片面积和成本的因素来考虑,缓存都很小。 L1 Cache(一级缓存)是CPU第一层高速缓存,分为数据缓存和指令缓存。内置的L1高速缓存的容量和结构对CPU的性能影响较大,不过高速缓冲存储器均由静态RAM组成,结构较复杂,在CPU管芯面积不能太大的情况下,L1级高速缓存的容量不可能做得太大。一般服务器CPU的L1缓存的容量通常在32—256KB。 L2 Cache(二级缓存)是CPU的第二层高速缓存,分内部和外部两种芯片。内部的芯片二级缓存运行速度与主频相同,而外部的二级缓存则只有主频的一半。L2高速缓存容量也会影响CPU的性能,原则是越大越好,现在家庭用CPU容量最大的是 512KB,而服务器和工作站上用CPU的L2高速缓存更高达256-1MB,有的高达2MB或者3MB。 L3 Cache(三级缓存),分为两种,早期的是外置,现在的都是内置的。而它的实际作用即是,L3缓存的应用可以进一步降低内存延迟,同时提升大数据量计算时处理器的性能。降低内存延迟和提升大数据量计算能力对游戏都很有帮助。而在服务器领域增加L3缓存在性能方面仍然有显著的提升。比方具有较大L3缓存的配置利用物理内存会更有效,故它比较慢的磁盘I/O子系统可以处理更多的数据请求。具有较大L3缓存的处理器提供更有效的文件系统缓存行为及较短消息和处理器队列长度。 其实最早的L3缓存被应用在AMD发布的K6-III处理器上,当时的L3缓存受限于制造工艺,并没有被集成进芯片内部,而是集成在主板上。在只能够和系统总线频率同步的L3缓存同主内存其实差不了多少。后来使用L3缓存的是英特尔为服务器市场所推出的Itanium处理器。接着就是P4EE和至强MP。Intel还打算推出一款9MB L3缓存的Itanium2处理器,和以后24MB L3缓存的双核心Itanium2处理器。 但基本上L3缓存对处理器的性能提高显得不是很重要,比方配备1MB L3缓存的Xeon MP处理器却仍然不是Opteron的对手,由此可见前端总线的增加,要比缓存增加带来更有效的性能提升。

主频率,外频和二级缓存和FSB!这仨指数是最重要的。

·主频

主频也叫时钟频率,单位是MHz,用来表示CPU的运算速度。CPU的主频=外频×倍频系数。很多人认为主频就决定着CPU的运行速度,这不仅是个片面的认识,而且对于服务器来讲,这个认识也出现了偏差。至今,没有一条确定的公式能够实现主频和实际的运算速度两者之间的量值关系,即使是两大处理器厂家 Intel和AMD,在这点上也存在着很大的争议,我们从Intel的产品的发展趋势,可以看出Intel很注重加强自身主频的发展。像其他的处理器生产厂家,有人曾经拿过一块1G的全美达来做比较,它的运行效率相当于2G的Intel处理器。

所以,CPU的主频与CPU实际的运算能力是没有直接关系的,主频表示在CPU内数字脉冲信号震荡的速度。在Intel的处理器产品中,我们也可以看到这样的例子:1 GHz Itanium芯片能够表现得差不多跟266 GHz Xeon/Opteron一样快,或是15 GHz Itanium 2大约跟4 GHz Xeon/Opteron一样快。CPU的运算速度还要看CPU的流水线的各方面的性能指标。

当然,主频和实际的运算速度是有关的,只能说主频是CPU性能表现的一个方面,而不能代表CPU的整体性能。

·外频

外频是CPU的基准频率,单位也是MHz。CPU的外频决定着整块主板的运行速度。说白了,在台式机中,我们所说的超频,都是超CPU的外频(当然一般情况下,CPU的倍频都是被锁住的)相信这点是很好理解的。但对于服务器CPU来讲,超频是绝对不允许的。前面说到CPU决定着主板的运行速度,两者是同步运行的,如果把服务器CPU超频了,改变了外频,会产生异步运行,(台式机很多主板都支持异步运行)这样会造成整个服务器系统的不稳定。

目前的绝大部分电脑系统中外频也是内存与主板之间的同步运行的速度,在这种方式下,可以理解为CPU的外频直接与内存相连通,实现两者间的同步运行状态。外频与前端总线(FSB)频率很容易被混为一谈,下面我们在前端总线的介绍中谈谈两者的区别。

缓存(Cache)大小是CPU的重要指标之一,其结构与大小对CPU速度的影响非常大。简单地讲,缓存就是用来存储一些常用或即将用到的数据或指令,当需要这些数据或指令的时候直接从缓存中读取,这样比到内存甚至硬盘中读取要快得多,能够大幅度提升CPU的处理速度。

缓存

所谓处理器缓存,通常指的是二级高速缓存,或外部高速缓存。即高速缓冲存储器,是位于CPU和主存储器DRAM(Dynamic RAM)之间的规模较小的但速度很高的存储器,通常由SRAM(静态随机存储器)组成。用来存放那些被CPU频繁使用的数据,以便使CPU不必依赖于速度较慢的DRAM(动态随机存储器)。L2高速缓存一直都属于速度极快而价格也相当昂贵的一类内存,称为SRAM(静态RAM),SRAM(Static RAM)是静态存储器的英文缩写。由于SRAM采用了与制作CPU相同的半导体工艺,因此与动态存储器DRAM比较,SRAM的存取速度快,但体积较大,价格很高。

处理器缓存的基本思想是用少量的SRAM作为CPU与DRAM存储系统之间的缓冲区,即Cache系统。80486以及更高档微处理器的一个显著特点是处理器芯片内集成了SRAM作为Cache,由于这些Cache装在芯片内,因此称为片内Cache。486芯片内Cache的容量通常为8K。高档芯片如 Pentium为16KB,Power PC可达32KB。Pentium微处理器进一步改进片内Cache,采用数据和双通道Cache技术,相对而言,片内Cache的容量不大,但是非常灵活、方便,极大地提高了微处理器的性能。片内Cache也称为一级Cache。由于486,586等高档处理器的时钟频率很高,一旦出现一级Cache未命中的情况,性能将明显恶化。在这种情况下采用的办法是在处理器芯片之外再加Cache,称为二级Cache。二级Cache实际上是CPU和主存之间的真正缓冲。由于系统板上的响应时间远低于CPU的速度,如果没有二级Cache就不可能达到486,586等高档处理器的理想速度。二级Cache的容量通常应比一级Cache大一个数量级以上。在系统设置中,常要求用户确定二级Cache是否安装及尺寸大小等。二级Cache的大小一般为128KB、 256KB或512KB。在486以上档次的微机中,普遍采用256KB或512KB同步Cache。所谓同步是指Cache和CPU采用了相同的时钟周期,以相同的速度同步工作。相对于异步Cache,性能可提高30%以上。

目前,PC及其服务器系统的发展趋势之一是CPU主频越做越高,系统架构越做越先进,而主存DRAM的结构和存取时间改进较慢。因此,缓存(Cache)技术愈显重要,在PC系统中Cache越做越大。广大用户已把Cache做为评价和选购PC系统的一个重要指标。

·前端总线(FSB)频率

前端总线(FSB)频率(即总线频率)是直接影响CPU与内存直接数据交换速度。有一条公式可以计算,即数据带宽=(总线频率×数据位宽)/8,数据传输最大带宽取决于所有同时传输的数据的宽度和传输频率。比方,现在的支持64位的至强Nocona,前端总线是800MHz,按照公式,它的数据传输最大带宽是64GB/秒。

外频与前端总线(FSB)频率的区别:前端总线的速度指的是数据传输的速度,外频是CPU与主板之间同步运行的速度。也就是说,100MHz外频特指数字脉冲信号在每秒钟震荡一千万次;而100MHz前端总线指的是每秒钟CPU可接受的数据传输量是 100MHz×64bit÷8bit/Byte=800MB/s。

其实现在“HyperTransport”构架的出现,让这种实际意义上的前端总线(FSB)频率发生了变化。之前我们知道IA-32架构必须有三大重要的构件:内存控制器Hub (MCH) ,I/O控制器Hub和PCI Hub,像Intel很典型的芯片组 Intel 7501、Intel7505芯片组,为双至强处理器量身定做的,它们所包含的MCH为CPU提供了频率为533MHz的前端总线,配合DDR内存,前端总线带宽可达到43GB/秒。但随着处理器性能不断提高同时给系统架构带来了很多问题。而“HyperTransport”构架不但解决了问题,而且更有效地提高了总线带宽,比方AMD Opteron处理器,灵活的HyperTransport I/O总线体系结构让它整合了内存控制器,使处理器不通过系统总线传给芯片组而直接和内存交换数据。这样的话,前端总线(FSB)频率在AMD Opteron处理器就不知道从何谈起了

我国模拟蜂窝移动通信曾使用890—905MHz(移动台发,基站收)和935—950MHz(基站发,移动台收)工作频段,现已逐步将部分频率让给GSM

我国数字蜂窝移动通信使用905—915MHz(移动台发,基站收)和950—960MHz(基站发,移动台收)工作频段,其中中国移动通信公司GSM系统使用905—909MHz和950—954MHz工作频段,中国联通公司GSM系统使用909—915MHz和954—960MHz工作频段。此外中国移动通信公司还使用了1800MHz频段的10MHz的带宽。

805~1880(基站发、移动台收)

双工间隔为95MHz,工作带宽为75 MHz,载频间隔为200 kHz。

中国联通频点分配 其中我国的800M频段,规定的频带为824MHz—894MHz,其中我国的CDMA网络主要使用上行825MHz—835MHz、下行870MHz—880MHz的800M A段频带,每载波宽度为125MHz。

在A端频带中中心频点频率的计算公式为:上行链路: 82500MHz+003MHz(N-1023);下行链路: 87000MHz+003MHz(N-1023);其中分配给联通的频点为283、242、201、160、119、78、37共七个频点,联通现网使用了283、242、201三个频点。

对于800M CDMA网络除A段外其它频带内中心频点频率的计算公式为:上行链路: 82500MHz+003MHzN

下行链路: 87000MHz+003MHzN。

\移动通信技术

移动通信概述

第一代移动通信:模拟移动通信

第二代移动通信:数字移动通信

移动数据通信

第三代移动通信

移动通信概述

综述

蜂窝技术的基本概念

提高容量

蜂窝技术不是分割频率而是分割地理区域

蜂窝系统的优势:频率复用

蜂窝移动通信的频率分配

我国模拟蜂窝移动通信曾使用890—905MHz(移动台发,基站收)和935—950MHz(基站发,移动台收)工作频段,现已逐步将部分频率让给GSM

我国数字蜂窝移动通信使用905—915MHz(移动台发,基站收)和950—960MHz(基站发,移动台收)工作频段,其中中国移动通信公司GSM系统使用905—909MHz和950—954MHz工作频段,中国联通公司GSM系统使用909—915MHz和954—960MHz工作频段。此外中国移动通信公司还使用了1800MHz频段的10MHz的带宽。

第三代移动通信工作在2000MHz频段上。

第一代移动通信:模拟移动通信

第一代模拟移动通信系统主要制式

AMPS

TACS

第一代的主要缺陷:

容量有限

保密性差,容易发生盗码并机

制式不统一,互不兼容,妨碍漫游,限制了服务覆盖面等

数字蜂窝系统的优势

能有效地利用无线频率资源,系统容量大

呼叫质量高

能向用户提供话音以外的多种非话业务

制式比较统一,能方便地提供自动漫游业务(包括国际漫游)

易于加密,提供较完善的保密方法(如话音、接入加密等)

数字网要求的功率较低

第二代数字移动通信系统主要制式

GSM(全球移动通信系统)

DCS-1800

TDMA IS—136(最初被称为D—AMPS)

CDMA IS—95(QCDMA)

PDC(个人数字蜂窝)

GSM系统组成

网络交换子系统(NSS)

移动交换中心(MSC)

归属位置寄存器(HLR)

访问位置寄存器(VLR)

鉴权中心(AUC)

设备识别寄存器(EIR)

基站子系统(BSS)

基站控制器(BSC)

基站收发信台(BTS)

操作维护中心(OMC)

移动台(MS)

GSM系统的主要优点

标准化程度高,接口开放,联网能力强,能国际漫游

能提供准ISDN业务:电信业务、承载业务、补充业务

使用SIM卡,实现机卡分离,手机通用,适合未来个人通信的需要

保密安全性能好,具有鉴权、加密功能

频谱利用率比模拟系统好,系统容量大,比模拟网大三倍以上

价格便宜

路由选择原则

固定用户呼叫移动用户,应尽可能快的就近进入移动网查询路由,由移动网进行接续。

移动用户呼叫固定用户,应立即进入固定网,由固定网进行接续。

移动通信系统主要采用的多址方式

频分多址(FDMA)

时分多址(TDMA)

码分多址(CDMA)

在码分多址系统中,各发送端用各不相同的、相互(准)正交的地址码调制其所发送的信号。在接收端利用码型的(准)正交性,通过地址识别(相关检测),从混合信号中选出相应的信号

实现码分多址的必备条件 (实现码分多址的三大关键技术)

足够多的地址码,且要有良好的自相关特性和互相关特性

在各接收端,必须产生本地地址码,其不但在码型结构上与对端发来的地址码一致,而且在相位上也要完全同步。用本地码对收到的全部信号进行相关检测,从中选出所需要的信号

码分系统必须与扩展频谱(简称扩频)技术相结合

采用CDMA技术的优点

系统容量大

语音激活技术

扇区划分技术

软容量

软切换

特有的分集形式

与窄带系统(模拟系统)共存

保密性强

发射功率低

频率分配和管理简单

移动数据通信技术

传输承载平台技术

短消息(SMS)

非结构化补充业务(USSD)

电路交换数据业务(CSD)

高速电路交换数据业务(HSCSD)

通用分组无线业务(GPRS)

增强型分组数据业务(EDGE)

第三代技术(3G)

应用开发平台技术

SIM卡应用工具(SIM Toolkit)

无线应用协议(WAP)

移动数据业务

电路型数据业务

CSD(接入速率96 kbit/s)

HSCSD (576 kbit/s)

分组型数据业务

GPRS(1712 kbit/s)

EDGE (384 kbit/s)

第三代数据业务(2 Mbit/s)

高速电路交换数据业务(HSCSD)

采用了新的信道编码方式,使每个时隙的传输速率从96 kbit/s提高到144 kbit/s

可实现1—4时隙捆绑,使传输速率最高可达到576 kbit/s

上下行数据传输可采用不同速率

通用分组无线业务(GPRS)的特点

传输速率快

支持4种编码方式,并采用多时隙(最多8个时隙)合并传输技术,使数据速率最高可达1712kbit/s

可灵活支持多种数据应用

网络接入速度快

可长时间在线连接

计费更加合理

高效地利用网络资源,降低通信成本

支持多用户共享一个信道的机制(每个时隙允许最多8个用户共享)

利用现有的无线网络覆盖,提高网络建设速度,降低建设成本

在无线接口,GPRS采用与GSM相同的物理信道,定义了新的用于分组数据传输的逻辑信道。可设置专用的分组数据信道,也可按需动态占用话音信道

GPRS的核心网络顺应通信网络的发展趋势,为GSM网向第三代演进打下基础

增强型数据业务(EDGE)

采用一种改进的GSM调制技术,每时隙的速率提高到48 kbit/s

允许集中使用多达8个时隙,此时速率可达到384 kbit/s

属于增强型GPRS数据业务

WAP系统组成

WAP网关(或WAP代理服务器)

功能:协议转换;内容编解码;用户认证、用户管理、计费功能等

WAP终端

WAP终端安装有支持WAP协议的微型浏览器作为用户接口,完成类似于Web浏览器的功能

无线网络

应用服务器

IMT-2000的特点

全球无缝覆盖和漫游

高速传输,提供窄带和宽带多媒体业务

无缝业务传递

支持系统平滑升级和现有系统的演进

适应多种运行环境

第三代移动通信地面无线接口主要技术

IMT—2000 CDMA DS(直接序列)

UTRA/WCDMA

cdma2000DS

IMT—2000 CDMA MC(多载波)

cdma2000MC(包括1x,3x并可扩展至6x,9x,12x)

IMT—2000 CDMA TDD(时分双工)

TD-SCDMA

UTRA TDD

IMT—2000 TDMA SC

UWC-l36

IMT—2000 TDMA MC

EP DECT

实施第二代网络向第三代演进时应该考虑的关键问题

投资

技术的可用性与成熟性

操作的灵活性

过渡要求

第二代向第三代过渡的方案

GSM网络向第三代的演进

GPRS

EDGE

窄带CDMA网络向第三代的演进

cdma2000-1x

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » 如何看CPU的快慢?

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情