边缘计算(Edge computing)的用例和物联网(IoT)
现今世界网络和数据普及,不单止智能手机能连接网络,就连手表,闹钟,家电等日常用品,也能即时在网络中提取资讯,并配合环据数据作出分析,将最好的体验反馈给 用家。而透过网络来连接人,流程,资讯和装置这个概念,亦是我们平常所说的物联网(物联网,又名物联网)。
承接上文介绍了雾计算的简单的应用和由来,下文将会介绍物联网的一个重要技术 - 边缘计算(Edge computing)。下文将会阐述边缘计算的由来,并介绍它与物联网的关系,而且会利用无人驾驶作为用例,介绍云计算的短处和边缘计算的应用。
先定义一下边缘计算(wikepedia,2019):
这里提到很多艰涩的专业名词,例如是“分散式运算”,“节点”等,其实只是描述:边缘技术是一种技术将大型应用程式的一部分转移到(即分散式运算)日常设备中处理(即边缘节点中)。
在云计算的典型结构中(如上图),通常可分为“云(云层) - 网(雾层) - 端(边缘)”三层。“端”这一层覆盖所有终端的应用程式,亦通常是被管理的角色。当云计算一计算出结果,就会到透过“网”层,将指令发送到“端”层的应用程式执行,而应用程式收到数据后,则会发送到“云”层作计算。
而边缘计算则可以想像为给予“端”层一定程度的“自治”。在边缘计算的架构中,终点被赋予简单的存储和计算能力(与雾计算不同,这里重点是“简单”的功能) ,令它能偶尔脱离云的管理,并根据环境数据作出回应。
增加终端系统简单的计算和存取能力看似一小步,但其实这个布局有着莫大的好处,当中包括:
- 低延迟:数据由近场产生,能快速回应
- 独立性:在没有网络连接下,系统亦能运作
- 合规性:无需传送用户资料,保护个人数据
- 简化数据:终端先处理部份数据,数据简化后才向云服务器传输
- 安全性:数据传输减少,减少网络安全风险
无人驾驶是边缘计算其中一个经典用例,亦是一个很好例子说明云计算的短处和为什么需要边缘计算。
下图展示的是常用的云计算架构,当中包括1)一架智能汽车(客户端),并且正在使用无人驾驶功能,2)互联网(Internet),用作传输数据,以及3)云服务(云计算)服务器),用作提供无人驾驶服务。
假设汽车正在以60ms-1的速度行驶,并在起始位置感测到前方3m有阻碍物。由于汽车正在使用云计算的架构,汽车本身并没有分析的功能,汽车会将感测到的影像 传送到云服务器中作分析(步骤1)。
很不幸地,由于汽车现在在北区甚远,信息在005s后才能到云服务 无上停驶,但也要经过005s才能将指令发送到汽车上执行(步骤2)。
在这段发送信息到回收指令的过程中(~01s),汽车会继续以均速行驶(60ms-1),并到6m后(= 60ms-1×01s)才会收到指令停下来 。而且会撞到在3m前的路人,酿成车祸。
汽车在起始位置感测到前方3m有阻碍物,会立刻执行停车指令(步骤1)。然后再发送影像和决策内容到云服务器中作进阶分析(步骤2),以改善无人驾驶性能。 (注:这里看似与雾计算方式相似,但在过程中,应用程式没有作任何的数据分析,只根据感应器内容作出回应。若然是雾计算的话,感应器信息会发送到雾服务中,再作分析,然后通知终端设备作出回应。)
由此可见,云服务器距离数据产生的位置较远,因此会造成较大的延迟。而无人驾驶这些需要实时作出决策的活动,则很大机会需要使用边缘计算,使计算的服务靠近产生数据的源头,做到计算更接近实际行动。
随着科技的进步,数据传输速度的快速提升,不少日常物品,例如是家用电器,车辆等,都已经嵌入感测器,并透过网络接结与互联网交换资讯,形成了庞大的物件网络(即物联网)。
物件会在运行时会收集到大量的环境数据。有些人会问,为什么不把数据都在本地(local drive)处理,其他数据再传到云服务做储存。这可能是其中一个可以实行的方法,但如果所有数据都在本地处理,物件本身要设有很多的存储装置和处理服务器。这会大大增加电力消秏和物件重量,增加成本。
因此,最好的方法是结合云计算和边缘计算的优势做出最佳的配置。在一些决定物件重大安全性的事件(例如如上文无人驾驶例子的刹车)可将决定的主导权放到边缘上,其他没有急切性的事情,则放到云服务器低成本集中处理。透过云与边缘的良好分工,大大减少成本,亦能提高运算效率。
启动IoT设备的DC3顺序是指依次启动设备、连接到云端和进行数据传输的顺序。这个顺序的原因是为了确保设备能够正确连接到云平台,并开始传输数据。
首先,设备的启动是第一步。设备需要启动并进行自检,确保硬件和软件都正常运行。这样可以避免因为设备故障或不稳定导致连接失败或数据传输中断的情况发生。
其次,设备需要连接到云端。这是通过设备与云平台之间的通信协议建立的。设备与云平台的连接是基于网络的,因此设备需要能够正常连接到网络,例如通过Wi-Fi或以太网连接。只有设备成功连接到云平台,才能确保与云平台进行数据交互和远程控制。
最后,设备进行数据传输。一旦设备成功连接到云平台,它可以开始将收集到的数据传输到云端。这些数据可以是传感器数据、设备状态信息等。通过数据传输,云平台可以对数据进行处理、存储和分析,从而实现各种应用,如监控、远程控制和数据分析等。
拓展内容:在启动IoT设备的DC3顺序之后,还可以进行其他操作,如设备的配置和管理、数据的可视化展示和分析等。此外,IoT设备的安全性也是非常重要的,包括设备的身份认证、数据的加密传输以及网络安全防护等措施,以保障设备和数据的安全性。
边缘计算指的是靠近物或数据源头的一侧,采用网络、计算、存储、应用核心能力为一体的开放平台。这些物或数据源头的一侧搭载着融合网络、计算、存储、 应用核心能力的边缘计算平台,为终端用户提供实时、动态和智能的服务计算。
什么是边缘计算
举个最简单的例子:在焊接机器人焊接两个钢制部件时,焊点如何选择?是偏左一点儿还是偏右一点儿,是偏上一点儿还是偏下一点儿?虽然冲压出来的钢板都是统一标准出来的,但是两个部件结合时难免会有细微差别,通过可视化观察以及边缘计算,机器人可以自己判断最优焊点的位置,将两个部件焊接牢固。每次焊接的数据通过网络上传至云端储存,用以机器学习。如果没有边缘计算,都通过云计算来判断焊点位置,生产效率会降低,同时焊点也可能千篇一律,有些部件可能正好赶上并不是最优的焊点位置,给焊接上了。
边缘计算有以下的六大特点:
第一,去中心化
边缘计算就是让网络、计算、存储、应用从“中心”向边缘分发,以就近提供智能边缘服务。
第二,非寡头化
边缘计算是互联网、移动互联网、物联网、工业互联网、电子、AI、IT、云计算、硬件设备、运营商等诸多领域的“十字入口”,一方面参与的各类厂商众多,另一方面“去中心化”在产品逻辑底层,就一定程度上通向了“非寡头化”。
第三,万物边缘化
边缘计算和早年的IT、互联网,如今的云计算、移动互联网,以及未来的人工智能一样,具备普遍性和普适性。
第四,安全化
在边缘计算出现之前,用户的大部分数据都要上传至数据中心,在这一上传的过程中,用户的数据尤其是隐私数据,比如个体标签数据、银行账户密码、电商平台消费数据、搜索记录、甚至智能摄像头等等,就存在着泄露的风险。而边缘计算因为很多情况下,不要再把数据上传到数据中心,而是在边缘近端就可以处理,因此也从源头有效解除了类似的风险。
第五,实时化
随着工业互联网、自动驾驶、智能家居、智能交通、智慧城市等各种场景的日益普及,这些场景下的应用对计算、网络传输、用户交互等的速度和效率要求也越来越高。以自动驾驶为例,在这些方面,几乎是要求秒级甚至是毫秒级的速度。爱陆通的具有边缘计算技术的工业网关可以更好地进行数据传输。
第六,绿色化
数据是在近端处理,因此在网络传输、中心运算、中心存储、回传等各个环节,都能节省大量的服务器、带宽、电量乃至物理空间等诸多成本,从而实现低成本化、绿色化。
据IDC数据显示,过去一年,中国边缘计算服务器市场爆发式增长了2663%,这意味着当前中国企业的IT架构正在迈向一个云网融合、混合多云、边缘计算等多架构并存的全新阶段。为帮助企业更好的应对数字化转型下的架构变革,7月18日联想正式发布全新边缘服务器ThinkServer SE550 V2,这款双路2U边缘服务器具备强大的计算性能和丰富的扩展能力,能够为企业边缘端应用和场景提供专业计算平台支持。
联想ISG中国战略及运营高级总监、智能边缘中国事业部总经理杨春表示:“边缘计算将在企业未来的数字化转型中发挥关键作用。联想正在将边缘计算业务上升到公司战略高度,致力于成为行业领先的边缘计算方案提供商。联想ThinkServer SE550 V2边缘服务器凭借强大的性能、丰富的扩展能力和稳定的可靠性,能够释放边缘端的强大算力,点燃边缘人工智能、边缘网络、边缘云、边缘加速等典型应用的智慧场景。”
近年来随着人工智能、5G、物联网等信息技术的不断发展,海量的数据被逐渐释放,仅依靠传统集中式的云计算架构难以解决企业低延时、本地化、高频次的计算需求。而边缘计算技术由于融合了边缘侧计算、存储、网络能力,能够在数据产生端就近提供边缘智能服务,从而满足用户和行业数字化所面临的敏捷链接、实时业务、智能应用、数据安全等关键需求,因此受到了众多企业的青睐。据Gartner预测,到2025年,约75%的企业数据将不通过数据中心,而是直接在边缘进行计算。
目前,我国智能制造、智慧零售、智慧园区、智慧城市等行业的智能化转型正在加速,这些复杂的场景对边缘计算设备的性能要求极高。比如在智能制造领域,利用边缘服务器作为载体,将机器视觉运用到产品质检过程中,智能实时处理海量数据,能够实现生产线的管理优化。作为计算平台的核心硬件之一,能够应对复杂多样的业务需求,面向特定场景的边缘服务器应运而生。
联想ThinkServer SE550 V2边缘服务器不仅满足运营商OTII边缘服务器的众多标准,配合联想“端-边-云-网-智”的全要素能力,还能为用户提供从软件到硬件的整套解决方案。联想ThinkServer SE550 V2支持最多两颗Intel Xeon 第三代可扩展处理器,每个处理器数量最多32核,并且支持NVIDIA专业GPU,为边缘人工智能的场景应用提供强大算力支持。此外,联想ThinkServer SE550 V2也可像普通2U机架式服务器一样,为用户的虚拟化、数据库、云计算和AI等应用场景提供强大的算力支撑。
联想ThinkServer SE550 V2实现了便携性与扩展性的平衡。联想ThinkServer SE550 V2采用短机箱设计,相比传统机架式服务器能够节省部署空间。同时,联想ThinkServer SE550 V2支持16个DDR4内存插槽,内存频率最高可支持到3200 MHz,整机内存最大可扩展到1TB。在硬盘容量方面,联想ThinkServer SE550 V2最多支持八个25英寸热插拔硬盘,最多两个内置M2高速固态硬盘,配合Lenovo Anybay技术,可在同一驱动器托架内灵活混搭SAS/SATA/NVMe硬盘,实现灵活扩展。
相比云端服务器,边缘服务器需要深入各类行业使用场景,应对不同的温度、工业环境等需求对产品进行设计和优化。基于联想在服务器领域多年的技术积累和品质追求,联想ThinkServer SE550 V2对可能存在的极限场景进行了针对性提升——通常产品工作温度范围为常温,而联想ThinkServer SE550 V2支持宽温使用,能够在45 高温中保持长期高效运行。同时,联想ThinkServer SE550 V2还通过了地震烈度测试,能够保证在极端情况下的数据安全和使用稳定。
边缘计算是联想重点聚焦和投入的核心技术领域之一,不久前联想正式成立智能边缘事业部,基于对产业趋势的洞察和用户需求的研究,联想正式发布智能边缘计算品牌“慧天”。同时,联想将充分整合其在边缘计算领域的硬件、软件、方案及服务,致力于成为业界领先的全栈式智能化边缘计算方案提供商。目前,联想已为智能制造、智慧城市、智慧园区、智慧教育、智慧医疗、智慧金融等领域的众多企业提供智能边缘计算服务。
在“ 科技 赋能中国智能化转型”的愿景下,联想中国区基础设施业务群将继续围绕“1248”战略全景,在边缘计算领域持续攻坚,打磨成熟的边缘计算解决方案,为千行百业客户提供绿色、敏捷、高效的“新IT”智能架构,助力中国企业迈向数字化转型新阶段。
你要问的是边缘服务是不是指部署模型到边缘服务器,是的。
ModelArts服务支持模型部署功能。用户可以将从OBS导入的模型或者训练作业生成的模型部署为边缘服务。
边缘服务依赖智能边缘平台,部署前需要在智能边缘平台上创建边缘节点,在边缘节点将模型部署为一个WebService。
0条评论