x86架构的服务器可以arm系统吗?
您要问的是x86架构的服务器可以装arm系统吗可以。根据查询中关村在线网信息显示,服务器厂商已经开始推出了基于ARM架构的服务器产品。这些服务器主要应用于云计算、边缘计算、物联网等领域,并且具有更好的功耗管理和灵活性。与X86架构相比,ARM架构在功耗方面具有明显优势,并且可以提供更好的性能和更长的续航时间。因此x86架构的服务器可以装arm系统。
资讯2019 年 1 1 月 1 8 日, NVIDIA 于今日发布一款参考设计平台,使企业能够快速构建 GPU 加速的 Arm 服务器 , 以满足日益多样化的科学和工业应用需求。 这 开辟 了 高性能计算的新纪元 。
NVIDIA 创始人兼首席执行官黄仁勋在 2 019 国际超级计算大会( SC19 )上宣布推出这款参考设计平台。该平台由硬件和软件基础模块组成,能够满足高性能计算( HPC )社区对于 类型 更加多样化的 C PU 架构日益增长的需求。通过该平台,超级计算中心、超大型云运营商和企业能够将 NVIDIA 加速计算平台的优势与最新的 Arm 服务器平台相结合。
为了构建 这一参考 平台, NVIDIA 与 Arm 及其生态合作伙伴(包括 Ampere 、富士通 和 Marvell ) 联手,以 确保 NVIDIA GPU 与 Arm 处理器 之间 的 无缝协作 。 该参考平台还得益于 与 HPE 旗下公司 Cray 和 HPE 这 两家早期采用 Arm 服务器的供应商之间的紧密合作。此外,许多高性能计算软件公司已使用 NVIDIA CUDA-X 库 来构建可在 Arm 服务器上运行 、 并可 通过 GPU 实现的管理和监控工具。
黄仁勋表示:“高性能计算正在崛起。机器学习和 AI 领域的突破正在重新定义科学研究方法 , 并且可能带来激动人心的新架构。从超大规模云到百万兆级超级计算, NVIDIA GPU 与 A RM 的组合让创新者们能够为不断增加的新应用创建系统。”
Arm IP 产品部门总裁 Rene Haas 表示:“ Arm 正在与生态合作伙伴一 同努力, 为百万兆级的 Arm 系统级芯片提供前所未有的性能和效率。我们与 NVIDIA 合作,将 CUDA 加速带入 到 Arm 架构当中 , 这对于高性能计算社区来说, 具有 里程碑 式的意义 。为了应对全球最复杂的研究 , 挑战并推动嵌入式系统、汽车和边缘细分市场的进一步发展,高性能计算社区已经在部署 Arm 技术。”
今年早些时候, NVIDIA 宣布 为 A rm 带来 C UDA-X 软件平台 。 NVIDIA 此次发布这一参考平台正是对此前承诺的兑现。 根据这一承诺, NVIDIA 正在提供 其 A rm 兼容软件开发套件 的预览版本。该版本包含 NVIDIA CUDA-X 库和加速计算开发工具。
联合整个高性能计算生态中的合作伙伴
除了 使 自己的软件 兼容 Arm 之外, NVIDIA 还与 GROMACS 、 LAMMPS 、 MILC 、 NAMD 、 Quantum Espresso 和 Relion 等 领先的 高性能计算 应用开发 商密切 合作 , 为 A RM 提供 GPU 加速 的 应 程序 用。 为了让 Arm 平台上的应用实现 GPU 加速, NVIDIA 及其高性能计算应用生态合作伙伴编译了大量代码。
为了构建 Arm 生态, NVIDIA 与领先的 Linux 发行商 Canonical 、 Red Hat, Inc 、 SUSE , 以及业内领先的高性能计算基础工具供应商 展开 合作。
几家世界级的超级计算中心已开始测试 GPU 加速 Arm 计算系统,其中包括美国的橡树岭国家实验室和桑迪亚国家实验室、英国布里斯托大学以及日本理化学研究所。
来自生态合作伙伴的支持
“ Ampere 非常高兴能够与 NVIDIA 合作开发 GPU 加速解决方案。该解决方案 将 与高性能、高能效 Ampere 的 服务器处理器实现无缝协作。我们的新产品将使我们的客户能够灵活选择最佳的 NVIDIA GPU 加速器,从而高效地运行云、边缘等要求极高的工作负载。”
—— Ampere Computing 董事长兼首席执行官, Renee James
“很高兴看到 NVIDIA 能够如此迅速地为 Arm 服务器带来 CUDA 和 OpenACC 。我们十分希望能够与 NVIDIA 及 其他公司开展密切的合作,在这一架构上编译、分析和调试加速应用。目前,我们已在 4096 核 Arm 系统上证明了这一合作所带来的优势。”
—— EPCC 主任, Mark Parsons 教授
“对于正在不断发展的 Arm 生态而言, NVIDIA 是一个备受欢迎且重要的生态成员。富士通相信,随着我们迈入新的计算时代, NVIDIA 将扩展 Arm 生态系统 , 并保证客户在高性能计算和数据科学 领域 ,尤其是人工智能领域有更多的选择。”
—— 富士通企业执行官兼服务平台业务部副主管, Takeshi Horie
“通过我们与 NVIDIA 的密切合作,部署 Marvell ThunderX2 服务器的客户现在可以使用全套 NVIDIA GPU 加速软件。这对于 Arm 生态系统的加速计算可用性来说 , 是一座重要的里程碑。我们将 继续 一同 将能效提高到一个新的水平,同时为百万兆级时代的众多超级计算和 AI 应用提供出众的性能。”
—— Marvell Semiconductor, Inc 副总裁兼服务器处理器业务部总经理 Gopal Hegde
“在 HPE 、 Marvell 和 NVIDIA 的帮助下,橡树岭国家实验室( Oak Ridge National Laboratory )成功地完成了所负责的工作,迅速升级了我们的 Arm 测试台系统,整合了性能测试并取得了良好的成果。在短短两周内,我们编译并正确运行了约八个领先级应用 程序 ,三个重要的社区库 , 以及常被用于评估 Arm 高性能计算生态的基准套件。根据早期结 果可以看出,这个由 Arm 主导的加速计算生态 的功能 似乎 和 POWER 以及 x86 环境 差不多 。对于一个 Arm 内的加速计算生态而言,这是一个了不起的开始。”
——橡树岭国家实验室国家计算科学中心科学主任, Jack C Wells
“我们与 NVIDIA 已经合作了很长时间。我们很高兴地看到, N VIDIA 实现了自己的承诺,为 Arm 高性能计算社区带来了领先的 CUDA-X 软件堆栈和生态系统。我们已经开始在通过 NVIDIA GPU 加速的 Arm 系统上评估理化学研究所的代码,我们 认为 它将为日本高性能计算和 AI 融合工作负载带来新一轮的创新。”
——日本理化学研究所所长, Satoshi Matsuoka
“由于 NVIDIA 为 Arm 主机 CPU 提供了新的支持,因此现在可以直接使用 Kokkos 和 LAMMPS 。这一结果达到了我们的期望,并且让我们可以借鉴在带有 x86 CPU 的系统中部署 NVIDIA GPU 的经验。”
——桑迪亚国家实验室主要技术人员, Christian Trott
“ NVIDIA 的 Arm 软件堆栈的确可以直接使用。我们之前就已大量使用 Arm 和 NVIDIA 这两个独立的平台,因此我们非常高兴这两者能够组合在一起。相比于我们之前尝试过的 x86 平台, NVIDIA 为 Arm 提供的 GPU 驱动器性能非常之好。能够在如此短的时间内取得这一成果,的确令人惊叹。”
—— 布里斯托大学高性能计算教授 , Simon McIntosh-Smith
是挺不错的。我们公司目前在使用。NxBox高密度ARM陈列式服务器集成多种芯片,满足各类云服务场景的业务架构,是面向安卓云产业生态体系提供的高性能服务器硬件。内部集成BMC管理系统,方便用户管理集群服务器,适用于云游戏,云手机,媒体监测,app群测等需要硬件赋能的场景。
能是能,但是不适合。
arm处理器一般用于小型设备、物联网这些,要求性能不大,功耗小。
服务器的话是要7x24小时不断运转的,而且性能要求要很强大,所以arm处理器不适合作为服务器级CPU。
Arm服务器在AI方面的应用,实时视频分析、人脸设别、医疗基因分析等等。这方面一则是Arm服务器和AI训练或者推理的ASIC、GPU等异构系统一起,达到高性能的AI应用目标,另外Arm服务器在多核并发上,有架构上的优势。 公开的信息,可以参考华为基于Arm的AI方案,或者亚马逊的Arm云应用实例等等。
0条评论