服务器三大框架?,第1张

从系统架构来看,目前的商用服务器大体可以分为三类,即对称多处理器结构(SMP:SymmetricMulti-Processor),非一致存储访问结构(NUMA:Non-UniformMemoryAccess),以及海量并行处理结构(MPP:MassiveParallelProcessing)。

一、SMP(SymmetricMulti-Processor)

所谓对称多处理器结构,是指服务器中多个CPU对称工作,无主次或从属关系。各CPU共享相同的物理内存,每个CPU访问内存中的任何地址所需时间是相同的,因此SMP也被称为一致存储器访问结构(UMA:UniformMemoryAccess)。对SMP服务器进行扩展的方式包括增加内存、使用更快的CPU、增加CPU、扩充I/O(槽口数与总线数)以及添加更多的外部设备(通常是磁盘存储)。

SMP服务器的主要特征是共享,系统中所有资源(CPU、内存、I/O等)都是共享的。也正是由于这种特征,导致了SMP服务器的主要问题,那就是它的扩展能力非常有限。对于SMP服务器而言,每一个共享的环节都可能造成SMP服务器扩展时的瓶颈,而最受限制的则是内存。由于每个CPU必须通过相同的内存总线访问相同的内存资源,因此随着CPU数量的增加,内存访问冲突将迅速增加,最终会造成CPU资源的浪费,使CPU性能的有效性大大降低。实验证明,SMP服务器CPU利用率最好的情况是2至4个CPU。

二、NUMA(Non-UniformMemoryAccess)

由于SMP在扩展能力上的限制,人们开始探究如何进行有效地扩展从而构建大型系统的技术,NUMA就是这种努力下的结果之一。利用NUMA技术,可以把几十个CPU(甚至上百个CPU)组合在一个服务器内。

NUMA服务器的基本特征是具有多个CPU模块,每个CPU模块由多个CPU(如4个)组成,并且具有独立的本地内存、I/O槽口等。由于其节点之间可以通过互联模块(如称为CrossbarSwitch)进行连接和信息交互,因此每个CPU可以访问整个系统的内存(这是NUMA系统与MPP系统的重要差别)。显然,访问本地内存的速度将远远高于访问远地内存(系统内其它节点的内存)的速度,这也是非一致存储访问NUMA的由来。由于这个特点,为了更好地发挥系统性能,开发应用程序时需要尽量减少不同CPU模块之间的信息交互。利用NUMA技术,可以较好地解决原来SMP系统的扩展问题,在一个物理服务器内可以支持上百个CPU。比较典型的NUMA服务器的例子包括HP的Superdome、SUN15K、IBMp690等。

但NUMA技术同样有一定缺陷,由于访问远地内存的延时远远超过本地内存,因此当CPU数量增加时,系统性能无法线性增加。如HP公司发布Superdome服务器时,曾公布了它与HP其它UNIX服务器的相对性能值,结果发现,64路CPU的Superdome(NUMA结构)的相对性能值是20,而8路N4000(共享的SMP结构)的相对性能值是63。从这个结果可以看到,8倍数量的CPU换来的只是3倍性能的提升。

三、MPP(MassiveParallelProcessing)

和NUMA不同,MPP提供了另外一种进行系统扩展的方式,它由多个SMP服务器通过一定的节点互联网络进行连接,协同工作,完成相同的任务,从用户的角度来看是一个服务器系统。其基本特征是由多个SMP服务器(每个SMP服务器称节点)通过节点互联网络连接而成,每个节点只访问自己的本地资源(内存、存储等),是一种完全无共享(ShareNothing)结构,因而扩展能力最好,理论上其扩展无限制,目前的技术可实现512个节点互联,数千个CPU。目前业界对节点互联网络暂无标准,如NCR的Bynet,IBM的SPSwitch,它们都采用了不同的内部实现机制。但节点互联网仅供MPP服务器内部使用,对用户而言是透明的。

在MPP系统中,每个SMP节点也可以运行自己的操作系统、数据库等。但和NUMA不同的是,它不存在异地内存访问的问题。换言之,每个节点内的CPU不能访问另一个节点的内存。节点之间的信息交互是通过节点互联网络实现的,这个过程一般称为数据重分配(DataRedistribution)。

但是MPP服务器需要一种复杂的机制来调度和平衡各个节点的负载和并行处理过程。目前一些基于MPP技术的服务器往往通过系统级软件(如数据库)来屏蔽这种复杂性。举例来说,NCR的Teradata就是基于MPP技术的一个关系数据库软件,基于此数据库来开发应用时,不管后台服务器由多少个节点组成,开发人员所面对的都是同一个数据库系统,而不需要考虑如何调度其中某几个节点的负载。

主流的Web服务器(也就是Web容器),如Tomcat、Jetty、WebLogic、WebSphere或其他笔者没有列举的服务器,都实现了自己定义的类加载器(一般都不止一个)。因为一个功能健全的Web容器,要解决如下几个问题:

1)部署在同一个Web容器上的两个Web应用程序所使用的类库可以实现相互隔离。这是最基本的需求,两个不同的应用程序可能会依赖同一个第三方类库的不同版本,不能要求一个类库在一个服务器中只有一份,服务器应当保证两个应用程序的类库可以互相独立使用。

2)部署在同一个Web容器上的两个Web应用程序所使用的类库可以互相共享。这个需求也很常见,例如,用户可能有10个使用Spring组织的应用程序部署在同一台服务器上,如果把10份Spring分别存放在各个应用程序的隔离目录中,将会是很大的资源浪费——这主要倒不是浪费磁盘空间的问题,而是指类库在使用时都要被加载到Web容器的内存,如果类库不能共享,虚拟机的方法区就会很容易出现过度膨胀的风险。

3)Web容器需要尽可能地保证自身的安全不受部署的Web应用程序影响。目前,有许多主流的Web容器自身也是使用语言来实现的。因此,Web容器本身也有类库依赖的问题,一般来说,基于安全考虑,容器所使用的类库应该与应用程序的类库互相独立。

4)支持JSP应用的Web容器,大多数都需要支持HotSwap功能。我们知道,JSP文件最终要编译成Class才能由虚拟机执行,但JSP文件由于其纯文本存储的特性,运行时修改的概率远远大于第三方类库或程序自身的Class文件。而且ASP、PHP和JSP这些网页应用也把修改后无须重启作为一个很大的“优势”来看待,因此“主流”的Web容器都会支持JSP生成类的热替换,当然也有“非主流”的,如运行在生产模式(ProductionMode)下的WebLogic服务器默认就不会处理JSP文件的变化。

由于存在上述问题,在部署Web应用时,单独的一个ClassPath就无法满足需求了,所以各种Web容都“不约而同”地提供了好几个ClassPath路径供用户存放第三方类库,这些路径一般都以“lib”或“classes”命名。被放置到不同路径中的类库,昌平电脑培训认为具备不同的访问范围和服务对象,通常,每一个目录都会有一个相应的自定义类加载器去加载放置在里面的类库。现在,就以Tomcat容器为例,看一看Tomcat具体是如何规划用户类库结构和类加载器的。

随着互联网的发展,越来越多的信息充斥在网络上,而大数据就是依靠对这些信息的收集、分类、归纳整理出我们所需要的信息,然后利用这些信息完成一些工作需要的一项能力技术。

今天,昌平电脑培训主要就是来分析一下,大数据这项技术到底有那几个层次。

移动互联网时代,数据量呈现指数级增长,其中文本、音视频等非结构数据的占比已超过85%,未来将进一步增大。Hadoop架构的分布式文件系统、分布式数据库和分布式并行计算技术解决了海量多源异构数据在存储、管理和处理上的挑战。

从2006年4月第一个ApacheHadoop版本发布至今,Hadoop作为一项实现海量数据存储、管理和计算的开源技术,已迭代到了v272稳定版,其构成组件也由传统的三驾马车HDFS、MapReduce和HBase社区发展为由60多个相关组件组成的庞大生态,包括数据存储、执行引擎、编程和数据访问框架等。其生态系统从10版的三层架构演变为现在的四层架构:

底层——存储层

现在互联网数据量达到PB级,传统的存储方式已无法满足高效的IO性能和成本要求,Hadoop的分布式数据存储和管理技术解决了这一难题。HDFS现已成为大数据磁盘存储的事实标准,其上层正在涌现越来越多的文件格式封装(如Parquent)以适应BI类数据分析、机器学习类应用等更多的应用场景。未来HDFS会继续扩展对于新兴存储介质和服务器架构的支持。另一方面,区别于常用的Tachyon或Ignite,分布式内存文件系统新贵Arrow为列式内存存储的处理和交互提供了规范,得到了众多开发者和产业巨头的支持。

区别于传统的关系型数据库,HBase适合于非结构化数据存储。而Cloudera在2015年10月公布的分布式关系型数据库Kudu有望成为下一代分析平台的重要组成,它的出现将进一步把Hadoop市场向传统数据仓库市场靠拢。

中间层——管控层

管控层对Hadoop集群进行高效可靠的资源及数据管理。脱胎于MapReduce10的YARN已成为Hadoop20的通用资源管理平台。如何与容器技术深度融合,如何提高调度、细粒度管控和多租户支持的能力,是YARN需要进一步解决的问题。另一方面,Hortonworks的Ranger、Cloudera的Sentry和RecordService组件实现了对数据层面的安全管控。

服务器架构随着应用场景的不同采用的架构方式也是不一样的,而今天我们就通过案例分析来简单学习一下,在服务器架构中的可扩展性都有哪些特点。

MySQL的可扩展性

架构的可扩展性往往和并发是息息相关,没有并发的增长,也就没有必要做高可扩展性的架构,这里对可扩展性进行简单介绍一下,常用的扩展手段有以下两种

Scale-up:纵向扩展,通过替换为更好的机器和资源来实现伸缩,提升服务能力

Scale-out:横向扩展,通过加节点(机器)来实现伸缩,提升服务能力

对于互联网的高并发应用来说,无疑Scaleout才是出路,通过纵向的买更的机器一直是我们所避讳的问题,也不是长久之计,在scaleout的理论下,可扩展性的理想状态是什么

可扩展性的理想状态

一个服务,当面临更高的并发的时候,能够通过简单增加机器来提升服务支撑的并发度,且增加机器过程中对线上服务无影响(nodowntime),这就是可扩展性的理想状态!

MySQL架构的演变

MySQL简单网站架构(V10)

一个简单的小型网站或者应用背后的架构可以非常简单,数据存储只需要一个mysqlinstance就能满足数据读取和写入需求(这里忽略掉了数据备份的实例),处于这个时间段的网站,一般会把所有的信息存到一个databaseinstance里面。

在这样的架构下,电脑培训来看看数据存储的瓶颈是什么

单实例单业务,依然存在V10所述瓶颈,遇到瓶颈时可以考虑往本文更高V版本升级,若是读请求导致达到性能瓶颈可以考虑往V30升级,其他瓶颈考虑往V40升级

构架sstap国内服务器方法。

1、下载SSTap,下载完之后需要解压并安装运行。

2、提取代理时选择对应的代理类型。

3、代理服务器的ip和端口号,填写用户名称。

三层架构和SOA架构是软件开发中常用的两种架构,本文将对它们的区别进行详细介绍。

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » 服务器三大框架?

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情