Ceph分布式存储是怎么防止脑裂的?

Ceph分布式存储是怎么防止脑裂的?,第1张

解决脑裂问题,通常采用隔离(Fencing)机制,包括三个方面:

共享存储fencing:确保只有一个Master往共享存储中写数据。

客户端fencing:确保只有一个Master可以响应客户端的请求。

Slave fencing:确保只有一个Master可以向Slave下发命令。

Hadoop公共库中对外提供了两种fenching实现,分别是sshfence和shellfence(缺省实现),其中sshfence是指通过ssh登陆目标Master节点上,使用命令fuser将进程杀死(通过tcp端口号定位进程pid,该方法比jps命令更准确),shellfence是指执行一个用户事先定义的shell命令(脚本)完成隔离。

切换对外透明:为了保证整个切换是对外透明的,Hadoop应保证所有客户端和Slave能自动重定向到新的active master上,这通常是通过若干次尝试连接旧master不成功后,再重新尝试链接新master完成的,整个过程有一定延迟。在新版本的Hadoop RPC中,用户可自行设置RPC客户端尝试机制、尝试次数和尝试超时时间等参数。

在“双机热备”高可用(HA)系统中,当联系2个节点的“心跳线”断开时,本来为一整体、动作协调的HA系统,就分裂成为2个独立的个体。由于相互失去了联系,都以为是对方出了故障,2个节点上的HA软件像“裂脑人”一样,“本能”地争抢“共享资源”、争起“应用服务”,就会发生严重后果:或者共享资源被瓜分、2边“服务”都起不来了;或者2边“服务”都起来了,但同时读写“共享存储”,导致数据损坏(常见如数据库轮询着的联机日志出错)。

运行于备用主机上的Heartbeat可以通过以太网连接检测主服务器的运行状态,一旦其无法检测到主服务器的“心跳”则自动接管主服务器的资源。通常情况下,主、备服务器间的心跳连接是一个独立的物理连接,这个连接可以是串行线缆、一个由“交叉线”实现的以太网连接。Heartbeat甚至可同时通过多个物理连接检测主服务器的工作状态,而其只要能通过其中一个连接收到主服务器处于活动状态的信息,就会认为主服务器处于正常状态。从实践经验的角度来说,建议为Heartbeat配置多条独立的物理连接,以避免Heartbeat通信线路本身存在单点故障。

1、串行电缆:被认为是比以太网连接安全性稍好些的连接方式,因为hacker无法通过串行连接运行诸如telnet、ssh或rsh类的程序,从而可以降低其通过已劫持的服务器再次侵入备份服务器的几率。但串行线缆受限于可用长度,因此主、备服务器的距离必须非常短。

2、以太网连接:使用此方式可以消除串行线缆的在长度方面限制,并且可以通过此连接在主备服务器间同步文件系统,从而减少了从正常通信连接带宽的占用。

基于冗余的角度考虑,应该在主、备服务器使用两个物理连接传输heartbeat的控制信息;这样可以避免在一个网络或线缆故障时导致两个节点同时认为自已是唯一处于活动状态的服务器从而出现争用资源的情况,这种争用资源的场景即是所谓的“脑裂”(split-brain)或“partitioned cluster”。在两个节点共享同一个物理设备资源的情况下,脑裂会产生相当可怕的后果。

为了避免出现脑裂,可采用下面的预防措施:

添加冗余的心跳线,例如双线条线。尽量减少“裂脑”发生机会。

启用磁盘锁。正在服务一方锁住共享磁盘,“裂脑”发生时,让对方完全“抢不走”共享磁盘资源。但使用锁磁盘也会有一个不小的问题,如果占用共享盘的一方不主动“解锁”,另一方就永远得不到共享磁盘。现实中假如服务节点突然死机或崩溃,就不可能执行解锁命令。后备节点也就接管不了共享资源和应用服务。于是有人在HA中设计了“智能”锁。即,正在服务的一方只在发现心跳线全部断开(察觉不到对端)时才启用磁盘锁。平时就不上锁了。

设置仲裁机制。例如设置参考IP(如网关IP),当心跳线完全断开时,2个节点都各自ping一下 参考IP,不通则表明断点就出在本端,不仅“心跳”、还兼对外“服务”的本端网络链路断了,即使启动(或继续)应用服务也没有用了,那就主动放弃竞争,让能够ping通参考IP的一端去起服务。更保险一些,ping不通参考IP的一方干脆就自我重启,以彻底释放有可能还占用着的那些共享资源。

避免脑裂现象,用到的一个参数是:discoveryzenminimum_master_nodes。这个参数决定了要选举一个Master需要多少个节点(最少候选节点数)。默认值是1。根据一般经验这个一般设置成 N/2 + 1,N是集群中节点的数量,例如一个有3个节点的集群,mi

因公司开发人员查询线上日志困难需求,故计划搭建 ELK 系统解决这一问题。了解到之前搭建过单机单节点的 ELK,但由于负载内存过高,停止弃用了。所以这次准备了三台性能不错的服务器,开始搭建 ELK 集群。

过程曲折且艰辛,记录下来以备不时之需。

由于这种方案,每个 logstash 都需要占用较大内存,这对线上各日志收集的应用服务器,压力太大难以承受。

filebeat是一个轻量级的日志采集器,部署简单占用内存小。这一方案总体上比较好了,只是 logstash 这一节点的压力比较大,查询到filebeat可以负载均衡输出到多个logstash,所以后边考虑了在准备的三台 elk 服务器上都安装一个 logstash ,这样就实现了下边这一方案。

上边的方案其实已经能够满足一般公司的日志需求,但超大的日志数量可能会存在数据错乱缺失,节点脑裂等多个问题。要尽量解决这些问题,要做的工作还很多,这里收集部分网上的建议,记录如下:

在个服务器上通过 yum install -y rpm 直接快速安装

安装后程序位置都在 /usr/share/ 下

配置文件都在 /etc/ 下

建议用 ansible 管理

启动:elasticsearch --- logstash --- filebeat --- kibana

停止:kibana --- filebeat --- logstash --- elasticsearch

1、与其他软件兼容性差,响应速度慢。

2、与服务器兼容不好,安装的时候基本上都会报错,然后覆盖原系统才能装上。

3、内核是redhat的,影响了一定的流畅性。

4、系统运行时,高级别进程在执行低级别文件后会降低级别,而低完整级进程不可能通过执行文件提升自己的权限。

扩展资料:

中标麒麟高可用集群软件是基于中标麒麟服务器操作系统开发的智能高可用软件产品,是国内首款支持国产龙芯CPU架构的高可用产品,通过应用中标麒麟高可用集群产品可以提升软硬件系统及应用运行的稳定性和可靠性;

该产品经过多年的用户应用及市场验证,提供的抗挫能力足以支持关键业务系统应用可靠性苛刻要求为政府、金融、电力、医疗、运输、制造业、等行业用户提供高效、至微的可靠服务。

中标麒麟高可用集群软件依托“系统可靠”——“数据可靠”——“应用可靠”实现对业务系统的“智能、多层次可靠保护”:

1、系统可靠:保护用户的操作系统及硬件设备,对故障操作系统及硬件设备进行智能、快速、便捷的恢复。

2、数据可靠:为用户共享数据提供一致性保护,当系统出现脑裂等极端故障的情况下,保证数据不被破坏。

3、应用可靠:为用户业务系统稳定、高效、持续的运行提供缜密的可靠保护。

脑裂计算机术语

英文称为“Split-Brain”。

脑裂是因为cluster分裂导致的,cluster集群中节点因为处理器忙或者其他原因暂时停止响应时,其他节点可能误认为该节点“已死”,从而夺取共享磁盘(即资源)的访问权,此时极有可能假死节点重新对共享文件系统产生读写操作,从而导致共享磁盘文件系统损坏。

ZooKeeper 由雅虎研究院开发,后来捐赠给了 Apache。ZooKeeper 是一个开源的分布式应用程序协调服务器,其为分布式系统提供一致性服务。其一致性是通过基于 Paxos 算法的ZAB 协议完成的。其主要功能包括:配置维护、域名服务、分布式同步、集群管理等。

zookeeper 的官网: http://zookeeperapacheorg

zk 是如何保证分布式系统的一致性的呢?是因为 zk 具有以下几方面的特点:

对于zk 理论的学习,最重要也是最难的知识点就是 Paxos 算法。所以我们首先学习 Paxos算法。

Paxos 算法是莱斯利·兰伯特(Leslie Lamport)1990 年提出的一种基于消息传递的、具有高容错性的一致性算法。Google Chubby 的作者 Mike Burrows 说过,世上只有一种一致性算法, 那就是 Paxos,所有其他一致性算法都是 Paxos 算法的不完整版。Paxos 算法是一种公认的晦涩难懂的算法,并且工程实现上也具有很大难度。较有名的 Paxos 工程实现有Google Chubby、ZAB、微信的 PhxPaxos 等。

Paxos 算法是用于解决什么问题的呢?Paxos 算法要解决的问题是,在分布式系统中如何就某个决议达成一致。

拜占庭将军问题是由 Paxos 算法作者莱斯利·兰伯特提出的点对点通信中的基本问题。该问题要说明的含义是,在不可靠信道上试图通过消息传递的方式达到一致性是不可能的。所以,Paxos 算法的前提是不存在拜占庭将军问题,即信道是安全的、可靠的,集群节点间传递的消息是不会被篡改的。

一般情况下,分布式系统中各个节点间采用两种通讯模型:共享内存(Shared Memory)、消息传递(Messages Passing)。而 Paxos 是基于消息传递通讯模型的。

在 Paxos 算法中有三种角色,分别具有三种不同的行为。但很多时候,一个进程可能同时充当着多种角色。

Paxos 算法的一致性主要体现在以下几点:

Paxos 对于提案的提交算法有两种方案,2PC 与 3PC。

它们的区别主要就在于 accept 阶段中是否包含 commit 功能。具体看下面的描述。

Paxos 算法的 3PC 执行过程划分为三个阶段:准备阶段 prepare、接受阶段 accept,与提交阶段 commit。

若提案者接收到的反馈数量超过了半数,则其会向外广播两类信息:

2PC 与 3PC 的区别是,在提案者接收到超过半数的表决者对于 parepare 阶段的反馈后,其会向所有表决者发送真正的提案 proposal。当表决者接受到 proposal 后就直接将其同步到了本地,不用再等待 commit 消息了。

那么,为什么不直接使用 2PC,而要使用 3PC 呢?是因为 2PC 中存在着较多的弊端(这里就不再展开来说了)。所以很多 Paxos 工业实现使用的都是 3PC 提交。但 2PC 提交的效率要高于 3PC 提交,所以在保证不出问题的情况下,是可以使用 2PC 提交的。

前面所述的Paxos 算法在实际工程应用过程中,根据不同的实际需求存在诸多不便之处, 所以也就出现了很多对于基本 Paxos 算法的优化算法,以对 Paxos 算法进行改进,例如,Multi Paxos、Fast Paxos、EPaxos。

例如,Paxos 算法存在“活锁问题”,Fast Paxos 算法对 Paxos 算法进行了改进:只允许一个进程提交提案,即该进程具有对 N 的唯一操作权。该方式解决了“活锁”问题。

ZAB ,Zookeeper Atomic Broadcast,zk 原子消息广播协议,是专为 ZooKeeper 设计的一种支持崩溃恢复的原子广播协议,在 Zookeeper 中,主要依赖 ZAB 协议来实现分布式数据一致性。

Zookeeper 使用一个单一主进程来接收并处理客户端的所有事务请求,即写请求。当服务器数据的状态发生变更后,集群采用 ZAB 原子广播协议,以事务提案 Proposal 的形式广播到所有的副本进程上。ZAB 协议能够保证一个全局的变更序列,即可以为每一个事务分配一个全局的递增编号 xid。

当 Zookeeper 客户端连接到 Zookeeper 集群的一个节点后,若客户端提交的是读请求, 那么当前节点就直接根据自己保存的数据对其进行响应;如果是写请求且当前节点不是Leader,那么节点就会将该写请求转发给 Leader,Leader 会以提案的方式广播该写操作,只要有超过半数节点同意该写操作,则该写操作请求就会被提交。然后 Leader 会再次广播给所有订阅者,即 Learner,通知它们同步数据。

ZAB 协议是 Paxos 算法的一种工业实现算法。但两者的设计目标不太一样。ZAB 协议主要用于构建一个高可用的分布式数据主从系统,即 Follower 是 Leader 的从机,Leader 挂了, 马上就可以选举出一个新的 Leader,但平时它们都对外提供服务。而 Fast Paxos 算法则是用于构建一个分布式一致性状态机系统,确保系统中各个节点的状态都是一致的。

另外,ZAB 还使用 Google 的 Chubby 算法作为分布式锁的实现,而 Google 的 Chubby 也是 Paxos 算法的应用。

zk 集群对于事务请求的处理是 Fast Paxos 算法的体现,即只允许 Leader 提出提案。其属于 3PC 提交。

但 Leader 选举是 Paxos 算法的体现,因为 Leader 宕机后,所有 Follower 均可提交提案, 它们在最初都是“我选我”。其属于 2PC 提交。

为了避免 Zookeeper 的单点问题,zk 也是以集群的形式出现的。zk 集群中的角色主要有以下三类:

Learner:学习者,同步者。

Learner = Follower + Observer

QuorumPeer = Participant = Leader + Follower

在 ZAB 中有三个很重要的数据:

ZAB 协议中对zkServer 的状态描述有三种模式。这三种模式并没有十分明显的界线,它们相互交织在一起。

zk 集群中的每一台主机,在不同的阶段会处于不同的状态。每一台主机具有四种状态。

在集群启动过程中,或 Leader 宕机后,集群就进入了恢复模式。恢复模式中最重要的阶段就是 Leader 选举。

A、serverId

这是zk 集群中服务器的唯一标识,也称为 sid,其实质就是 zk 中配置的 myid。例如, 有三个 zk 服务器,那么编号分别是 1,2,3。

B、 逻辑时钟

逻辑时钟,Logicalclock,是一个整型数,该概念在选举时称为 logicalclock,而在选举结束后称为epoch。即 epoch 与 logicalclock 是同一个值,在不同情况下的不同名称。

在集群启动过程中的 Leader 选举过程(算法)与 Leader 断连后的 Leader 选举过程稍微有一些区别,基本相同。

A、集群启动中的 Leader 选举

对于 Server1 而言,它的投票是(1, 0),接收 Server2 的投票为(2, 0)。其首先会比较两者的 ZXID,均为 0,再比较 myid,此时 Server2 的 myid 最大,于是 Server1 更新自己的投票为(2, 0),然后重新投票。对于 Server2 而言,其无须更新自己的投票,只是再次向集群中所有主机发出上一次投票信息即可。

(4) 统计投票。每次投票后,服务器都会统计投票信息,判断是否已经有过半机器接受到相同的投票信息。对于 Server1、Server2 而言,都统计出集群中已经有两台主机接受了(2, 0)的投票信息,此时便认为已经选出了新的 Leader,即 Server2。

(5) 改变服务器状态。一旦确定了 Leader,每个服务器就会更新自己的状态,如果是Follower,那么就变更为 FOLLOWING,如果是 Leader,就变更为 LEADING。

(6) 添加主机。在新的 Leader 选举出来后 Server3 启动,其想发出新一轮的选举。但由于当前集群中各个主机的状态并不是 LOOKING,而是各司其职的正常服务,所以其只能是以Follower 的身份加入到集群中。

B、 宕机后的 Leader 选举

在 Zookeeper 运行期间,Leader 与非 Leader 服务器各司其职,即便当有非 Leader 服务器宕机或新加入时也不会影响 Leader。但是若 Leader 服务器挂了,那么整个集群将暂停对外服务,进入新一轮的 Leader 选举,其过程和启动时期的 Leader 选举过程基本一致。

前面我们说过,恢复模式具有两个阶段:Leader 选举与初始化同步。当完成 Leader 选举后,此时的 Leader 还是一个准 Leader,其要经过初始化同步后才能变为真正的 Leader。

具体过程如下:

当集群中的 Learner 完成了初始化状态同步,那么整个 zk 集群就进入到了正常工作模式了。

如果集群中的 Learner 节点收到客户端的事务请求,那么这些 Learner 会将请求转发给Leader 服务器。然后再执行如下的具体过程:

Observer 数量并不是越多越好,一般与 Follower 数量相同。因为 Observer 数量的增多虽不会增加事务操作压力,但其需要从 Leader 同步数据,Observer 同步数据的时间是小于等于 Follower 同步数据的时间的。当 Follower 同步数据完成,Leader 的 Observer 列表中的Observer 主机将结束同步。那些完成同步的 Observer 将会进入到另一个对外提供服务的列表。那么,那些没有同步了数据无法提供服务的 Observer 主机就形成了资源浪费。

所以,对于事务操作发生频繁的系统,不建议使用过多的 Observer。

Leader 中保存的 Observer 列表其实有两个:

all:包含所有 Observer。

service:已经完成了从 Leader 同步数据的任务。service <= all。其是动态的。

Leader 中保存的 Follower 列表其实也有两个:

all:要求其中必须有过半的 Follower 向Leader 反馈ACK

service:

当集群正在启动过程中,或 Leader 崩溃后,集群就进入了恢复模式。对于要恢复的数据状态需要遵循三个原则。

若集群中 Leader 收到的 Follower 心跳数量没有过半,此时 Leader 会自认为自己与集群的连接已经出现了问题,其会主动修改自己的状态为 LOOKING,去查找新的 Leader。

而其它 Server 由于有过半的主机认为已经丢失了 Leader,所以它们会发起新的 Leader选举,选出一个新的 Leader。

正常情况下,当 Leader 收到超过半数 Follower 的 ACKs 后,就向各个 Follower 广播COMMIT 消息,批准各个Server 执行该写操作事务。当各个Server 在接收到Leader 的COMMIT 消息后就会在本地执行该写操作,然后会向客户端响应写操作成功。

但是如果在非全部 Follower 收到 COMMIT 消息之前 Leader 就挂了,这将导致一种后果:部分 Server 已经执行了该事务,而部分 Server 尚未收到 COMMIT 消息,所以其并没有执行该事务。当新的 Leader 被选举出,集群经过恢复模式后需要保证所有 Server 上都执行了那些已经被部分 Server 执行过的事务。

当在 Leader 新事务已经通过,其已经将该事务更新到了本地,但所有 Follower 还都没有收到 COMMIT 之前,Leader 宕机了,此时,所有 Follower 根本就不知道该 Proposal 的存在。当新的 Leader 选举出来,整个集群进入正常服务状态后,之前挂了的 Leader 主机重新启动并注册成为了 Follower。若那个别人根本不知道的 Proposal 还保留在那个主机,那么其数据就会比其它主机多出了内容,导致整个系统状态的不一致。所以,该 Proposa 应该被丢弃。类似这样应该被丢弃的事务,是不能再次出现在集群中的,应该被清除。

前面我们说过,无论是写操作投票,还是 Leader 选举投票,都必须过半才能通过,也就是说若出现超过半数的主机宕机,则投票永远无法通过。基于该理论,由 5 台主机构成的集群,最多只允许 2 台宕机。而由 6 台构成的集群,其最多也只允许 2 台宕机。即,6 台与5 台的容灾能力是相同的。基于此容灾能力的原因,建议使用奇数台主机构成集群,以避免资源浪费。

但从系统吞吐量上说,6 台主机的性能一定是高于 5 台的。所以使用 6 台主机并不是资源浪费。

对于一个高可用的系统,除了要设置多台主机部署为一个集群避免单点问题外,还需要考虑将集群部署在多个机房、多个楼宇。对于多个机房、楼宇中集群也是不能随意部署的, 下面就多个机房的部署进行分析。

在多机房部署设计中,要充分考虑“过半原则”,也就是说,尽量要确保 zk 集群中有过半的机器能够正常运行。

在生产环境下,三机房部署是最常见的、容灾性最好的部署方案。三机房部署中要求每个机房中的主机数量必须少于集群总数的一半。

zk 官方没有给出较好的双机房部署的容灾方案。只能是让其中一个机房占有超过半数的主机,使其做为主机房,而另一机房少于半数。当然,若主机房出现问题,则整个集群会瘫痪。

CAP 定理又称 CAP 原则,指的是在一个分布式系统中,Consistency(一致性)、Availability(可用性)、Partition tolerance(分区容错性),三者不可兼得。

对于分布式系统,网络环境相对是不可控的,出现网络分区是不可避免的,因此系统必须具备分区容错性。但其并不能同时保证一致性与可用性。CAP 原则对于一个分布式系统来说,只可能满足两项,即要么 CP,要么 AP。

BASE 是Basically Available(基本可用)、Soft state(软状态)和 Eventually consistent(最终一致性)三个短语的简写。

BASE 理论的核心思想是:即使无法做到实时一致性,但每个系统都可以根据自身的业务特点,采用适当的方式来使系统达到最终一致性。

基本可用是指分布式系统在出现不可预知故障的时候,允许损失部分可用性。

损失响应时间:

损失功能:

软状态,是指允许系统数据存在的中间状态,并认为该中间状态的存在不会影响系统的整体可用性,即允许系统主机间进行数据同步的过程存在一定延时。软状态,其实就是一种灰度状态,过渡状态。

最终一致性强调的是系统中所有的数据副本,在经过一段时间的同步后,最终能够达到一个一致的状态。因此,最终一致性的本质是需要系统保证最终数据能够达到一致,而不需要实时保证系统数据的一致性。

从达到一致性的时间角度来划分,可以分为:

单从客户端访问到的内容角度来划分,可以分为:

zk 遵循的是 CP 原则,即保证了一致性,但牺牲了可用性。体现在哪里呢?

当 Leader 宕机后,zk 集群会马上进行新的 Leader 的选举。但选举时长一般在 200 毫秒内,最长不超过 60 秒,整个选举期间 zk 集群是不接受客户端的读写操作的,即 zk 集群是处于瘫痪状态的。所以,其不满足可用性。

这里说的zk可能会引发脑裂,是指的在多机房部署中,若出现了网络连接问题,形成多个分区,则可能会出现脑裂问题,可能会导致数据不一致。

(1)情况一

(2)情况二

(5)情况五

一、集群搭建

1前置操作

若克隆已有的es虚拟机,一定要清空一下文件:

2配置集群,修改elasticsearchyml

# 配置集群名称,保证每个节点的名称相同,如此就能都处于一个集群之内了

clustername: imooc-es-cluster

# 每一个节点的名称,必须不一样

nodename: es-node1

# http端口(使用默认即可)

httpport: 9200

# 主节点,作用主要是用于来管理整个集群,负责创建或删除索引,管理其他非master节点(相当于企业老总)

nodemaster: true

# 数据节点,用于对文档数据的增删改查

nodedata: true

# 集群列表(列出所有的其它服务器ip)

discoveryseed_hosts: ["1921681184", "1921681185", "1921681186"]

# 启动的时候使用一个master节点

clusterinitial_master_nodes: ["es-node1"]

3可查看剔除注释的配置文件内容

more elasticsearchyml | grep ^[^#]

4分别启动各个节点,后查看信息

二、集群脑裂

1集群脑裂

如果发生网络中断或者服务器宕机,那么集群会有可能被划分为两个部分,各自有自己的master管理,那么这就是脑裂

服务器1原为master,宕机后自己投票为master

2解决方案

解决实现原理:半数以上的节点同意选举,节点方可成为master

discoveryzenminimum_master_nodes=(N/2)+1;

N为集群中master节点的数量,也就是nodemaster=true服务节点总数

3ES7之后无此参数,已交由es自己管理

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » Ceph分布式存储是怎么防止脑裂的?

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情