负载均衡是怎么做的~
1、服务直接返回:这种安装方式负载均衡的LAN口不使用,WAN口与服务器在同一个网络中,互联网的客户端访问负载均衡的虚IP(VIP),虚IP对应负载均衡机的WAN口,负载均衡根据策略将流量分发到服务器上,服务器直接响应客户端的请求。
2、桥接模式:桥接模式配置简单,不改变现有网络。负载均衡的WAN口和LAN口分别连接上行设备和下行服务器。LAN口不需要配置IP(WAN口与LAN口是桥连接),所有的服务器与负载均衡均在同一逻辑网络中。
3、路由模式:路由模式的部署方式,服务器的网关必须设置成负载均衡机的LAN口地址,且与WAN口分署不同的逻辑网络。因此所有返回的流量也都经过负载均衡。这种方式对网络的改动小,能均衡任何下行流量。
扩展资料
负载均衡的算法:
1、随机算法:Random随机,按权重设置随机概率。在一个截面上碰撞的概率高,但调用量越大分布越均匀,而且按概率使用权重后也比较均匀,有利于动态调整提供者权重。
2、哈希算法:一致性哈希一致性Hash,相同参数的请求总是发到同一提供者。当某一台提供者挂时,原本发往该提供者的请求,基于虚拟节点,平摊到其它提供者,不会引起剧烈变动。
3、URL散列:通过管理客户端请求URL信息的散列,将发送至相同URL的请求转发至同一服务器的算法。
参考资料
-负载均衡
Internet的规模每一百天就会增长一倍,客户希望获得7天24小时的不间断可用性及较快的系统反应时间,而不愿屡次看到某个站点“Server Too Busy”及频繁的系统故障。
网络的各个核心部分随着业务量的提高、访问量和数据流量的快速增长,其处理能力和计算强度也相应增大,使得单一设备根本无法承担。在此情况下,如果扔掉现有设备去做大量的硬件升级,这样将造成现有资源的浪费,而且如果再面临下一次业务量的提升,这又将导致再一次硬件升级的高额成本投入,甚至性能再卓越的设备也不能满足当前业务量的需求。于是,负载均衡机制应运而生。
负载均衡(Load Balance)建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。
负载均衡有两方面的含义:首先,大量的并发访问或数据流量分担到多台节点设备上分别处理,减少用户等待响应的时间;其次,单个重负载的运算分担到多台节点设备上做并行处理,每个节点设备处理结束后,将结果汇总,返回给用户,系统处理能力得到大幅度提高。
什么是负载均衡
负载均衡(Load Balance)
由于目前现有网络的各个核心部分随着业务量的提高,访问量和数据流量的快速增长,其处理能力和计算强度也相应地增大,使得单一的服务器设备根本无法承担。在此情况下,如果扔掉现有设备去做大量的硬件升级,这样将造成现有资源的浪费,而且如果再面临下一次业务量的提升时,这又将导致再一次硬件升级的高额成本投入,甚至性能再卓越的设备也不能满足当前业务量增长的需求。
针对此情况而衍生出来的一种廉价有效透明的方法以扩展现有网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性的技术就是负载均衡(Load Balance)。
负载均衡技术主要应用
1、DNS负载均衡
最早的负载均衡技术是通过DNS来实现的,在DNS中为多个地址配置同一个名字,因而查询这个名字的客户机将得到其中一个地址,从而使得不同的客户访问不同的服务器,达到负载均衡的目的。DNS负载均衡是一种简单而有效的方法,但是它不能区分服务器的差异,也不能反映服务器的当前运行状态。
2、代理服务器负载均衡
使用代理服务器,可以将请求转发给内部的服务器,使用这种加速模式显然可以提升静态网页的访问速度。然而,也可以考虑这样一种技术,使用代理服务器将请求均匀转发给多台服务器,从而达到负载均衡的目的。
3、地址转换网关负载均衡
支持负载均衡的地址转换网关,可以将一个外部IP地址映射为多个内部IP地址,对每次TCP连接请求动态使用其中一个内部地址,达到负载均衡的目的。
4、协议内部支持负载均衡
除了这三种负载均衡方式之外,有的协议内部支持与负载均衡相关的功能,例如HTTP协议中的重定向能力等,HTTP运行于TCP连接的层。
5、NAT负载均衡
NAT(Network Address Translation 网络地址转换)简单地说就是将一个IP地址转换为另一个IP地址,一般用于未经注册的内部地址与合法的、已获注册的Internet IP地址间进行转换。适用于解决Internet IP地址紧张、不想让网络外部知道内部网络结构等的场合下。
6、反向代理负载均衡
普通代理方式是代理内部网络用户访问internet上服务器的连接请求,客户端必须指定代理服务器,并将本来要直接发送到internet上服务器的连接请求发送给代理服务器处理。反向代理(Reverse Proxy)方式是指以代理服务器来接受internet上的连接请求,然后将请求转发给内部网络上的服务器,并将从服务器上得到的结果返回给internet上请求连接的客户端,此时代理服务器对外就表现为一个服务器。反向代理负载均衡技术是把将来自internet上的连接请求以反向代理的方式动态地转发给内部网络上的多台服务器进行处理,从而达到负载均衡的目的。
7、混合型负载均衡
在有些大型网络,由于多个服务器群内硬件设备、各自的规模、提供的服务等的差异,我们可以考虑给每个服务器群采用最合适的负载均衡方式,然后又在这多个服务器群间再一次负载均衡或群集起来以一个整体向外界提供服务(即把这多个服务器群当做一个新的服务器群),从而达到的性能。我们将这种方式称之为混合型负载均衡。此种方式有时也用于单台均衡设备的性能不能满足大量连接请求的情况下。
哪些地方需要使用负载均衡
在国内的环境中有三个地方可以使用到这个功能,首先应该是网吧,网吧对带宽的要求较高,而因为国内ISP混乱的情况,有些网吧也会用到多线路接入,所以负载均衡对网吧是很实用的功能,其次是企业和小区运营商。企业也会有这样的需求,有些企业对网络要求也很高,甚至没有网络就不能办公。另外就是小区运营商了,小区运营商也有很多使用多线路接入,这样负载均衡也就很适合了。
如何使用负载均衡
现在很多路由都带有负载均衡功能,可以直接在路由上设置然后使用,比如软路由海蜘蛛、ROS等,硬路由有侠诺,飞鱼星等。需要注意的是在使用前了解清楚路由的具体的型号支不支持。
通过负载均衡可以解决以下问题:
1、解决网络拥塞问题,服务就近提供。
2、为用户提供更好的访问质量。
3、提高服务器响应速度。
4、提高服务器及其他资源的利用效率。
网络负载均衡是由多台服务器以对称的方式组成一个服务器集合,每台服务器都具有等价的地位,都可以单独对外提供服务而无须其他服务器的辅助。
通过负载均衡技术,将外部发送来的请求,均匀分配到对称结构中的每一台服务器上,而接收到请求的服务器则独立地回应客户的请求。
网络负载均衡的主要应用
1、DNS负载均衡
在DNS中为多个地址配置同一个名字,查询这个名字的客户机将得到其中一个地址,从而使得不同的客户访问不同的服务器,达到负载均衡的目的。
2、代理服务器
代理服务器将请求均匀转发给多台服务器,从而达到负载均衡的目的。
3、负载均衡器
负载均衡器采用各种分配算法把网络请求分散到一个服务器集群中的可用服务器上去,有些负载均衡器集成在交换设备中,置于服务器与Internet链接之间。
有些则以两块网络适配器将负载均衡功能集成到PC中,一块连接到Internet上,一块连接到后端服务器群的内部网络上。当Web服务器为图像服务、安全套接层会话或数据库事务而进行优化时,负载均衡器可以发挥特别功效。
11 负载均衡介绍
111 负载均衡的妙用
112 为什么要用lvs
那为什么要用lvs呢?
ü 简单一句话,当并发超过了Nginx上限,就可以使用LVS了。
ü 日1000-2000W PV或并发请求1万以下都可以考虑用Nginx。
ü 大型门户网站,电商网站需要用到LVS。
12 LVS介绍
LVS是Linux Virtual Server的简写,意即Linux虚拟服务器,是一个虚拟的服务器集群系统,可以在UNIX/LINUX平台下实现负载均衡集群功能。该项目在1998年5月由章文嵩博士组织成立,是 中国国内最早出现的自由软件项目之一 。
121 相关参考资料
LVS官网: http://wwwlinuxvirtualserverorg/indexhtml
相关中文资料
122 LVS内核模块ip_vs介绍
ü LVS无需安装
ü 安装的是管理工具,第一种叫ipvsadm,第二种叫keepalive
ü ipvsadm是通过命令行管理,而keepalive读取配置文件管理
ü 后面我们会用Shell脚本实现keepalive的功能
13 LVS集群搭建
131 集群环境说明
主机说明
web环境说明
web服务器的搭建参照:
Tomcat:
http://wwwcnblogscom/clsn/p/7904611html
Nginx:
http://wwwcnblogscom/clsn/p/7750615html
132 安装ipvsadm管理工具
安装管理工具
查看当前LVS状态,顺便激活LVS内核模块。
查看系统的LVS模块。
133 LVS集群搭建
命令集 :
检查结果 :
ipvsadm参数说明: (更多参照 man ipvsadm)
134 在web浏览器配置操作
命令集 :
至此LVS集群配置完毕 !
135 进行访问测试
浏览器访问:
命令行测试:
抓包查看结果:
arp解析查看:
14 负载均衡(LVS)相关名词
术语说明:
141 LVS集群的工作模式--DR直接路由模式
DR模式是通过改写请求报文的目标MAC地址,将请求发给真实服务器的,而真实服务器将响应后的处理结果直接返回给客户端用户。
DR技术可极大地提高集群系统的伸缩性。但要求调度器LB与真实服务器RS都有一块物理网卡连在同一物理网段上,即必须在同一局域网环境。
DR直接路由模式说明:
a)通过在调度器LB上修改数据包的目的MAC地址实现转发。注意,源IP地址仍然是CIP,目的IP地址仍然是VIP。
b)请求的报文经过调度器,而RS响应处理后的报文无需经过调度器LB,因此,并发访问量大时使用效率很高,比Nginx代理模式强于此处。
c)因DR模式是通过MAC地址的改写机制实现转发的,因此,所有RS节点和调度器LB只能在同一个局域网中。需要注意RS节点的VIP的绑定(lo:vip/32)和ARP抑制问题。
d)强调一下:RS节点的默认网关不需要是调度器LB的DIP,而应该直接是IDC机房分配的上级路由器的IP(这是RS带有外网IP地址的情况),理论上讲,只要RS可以出网即可,不需要必须配置外网IP,但走自己的网关,那网关就成为瓶颈了。
e)由于DR模式的调度器仅进行了目的MAC地址的改写,因此,调度器LB无法改变请求报文的目的端口。LVS DR模式的办公室在二层数据链路层(MAC),NAT模式则工作在三层网络层(IP)和四层传输层(端口)。
f)当前,调度器LB支持几乎所有UNIX、Linux系统,但不支持windows系统。真实服务器RS节点可以是windows系统。
g)总之,DR模式效率很高,但是配置也较麻烦。因此,访问量不是特别大的公司可以用haproxy/Nginx取代之。这符合运维的原则:简单、易用、高效。日1000-2000W PV或并发请求1万以下都可以考虑用haproxy/Nginx(LVS的NAT模式)
h)直接对外的访问业务,例如web服务做RS节点,RS最好用公网IP地址。如果不直接对外的业务,例如:MySQL,存储系统RS节点,最好只用内部IP地址。
DR的实现原理和数据包的改变
(a) 当用户请求到达Director Server,此时请求的数据报文会先到内核空间的PREROUTING链。 此时报文的源IP为CIP,目标IP为VIP
(b) PREROUTING检查发现数据包的目标IP是本机,将数据包送至INPUT链
(c) IPVS比对数据包请求的服务是否为集群服务,若是,将请求报文中的源MAC地址修改为DIP的MAC地址,将目标MAC地址修改RIP的MAC地址,然后将数据包发至POSTROUTING链。 此时的源IP和目的IP均未修改,仅修改了源MAC地址为DIP的MAC地址,目标MAC地址为RIP的MAC地址
(d) 由于DS和RS在同一个网络中,所以是通过二层来传输。POSTROUTING链检查目标MAC地址为RIP的MAC地址,那么此时数据包将会发至Real Server。
(e) RS发现请求报文的MAC地址是自己的MAC地址,就接收此报文。处理完成之后,将响应报文通过lo接口传送给eth0网卡然后向外发出。 此时的源IP地址为VIP,目标IP为CIP
(f) 响应报文最终送达至客户端
15 在web端的操作有什么含义?
151 RealServer为什么要在lo接口上配置VIP?
既然要让RS能够处理目标地址为vip的IP包,首先必须要让RS能接收到这个包。
在lo上配置vip能够完成接收包并将结果返回client。
152 在eth0网卡上配置VIP可以吗?
不可以,将VIP设置在eth0网卡上,会影响RS的arp请求,造成整体LVS集群arp缓存表紊乱,以至于整个负载均衡集群都不能正常工作。
153 为什么要抑制ARP响应?
① arp协议说明
为了提高IP转换MAC的效率,系统会将解析结果保存下来,这个结果叫做ARP缓存。
ARP缓存表是把双刃剑
ARP广播进行新的地址解析
测试命令
windows查看arp -a
③arp_announce和arp_ignore详解
lvs在DR模式下需要关闭arp功能
arp_announce
对网络接口上,本地IP地址的发出的,ARP回应,作出相应级别的限制:
确定不同程度的限制,宣布对来自本地源IP地址发出Arp请求的接口
arp_ignore 定义
对目标地定义对目标地址为本地IP的ARP询问不同的应答模式0
抑制RS端arp前的广播情况
抑制RS端arp后广播情况
16 LVS集群的工作模式
DR(Direct Routing)直接路由模式
NAT(Network Address Translation)
TUN(Tunneling)隧道模式
FULLNAT(Full Network Address Translation)
161 LVS集群的工作模式--NAT
通过网络地址转换,调度器LB重写请求报文的目标地址,根据预设的调度算法,将请求分派给后端的真实服务器,真实服务器的响应报文处理之后,返回时必须要通过调度器,经过调度器时报文的源地址被重写,再返回给客户,完成整个负载调度过程。
收费站模式---来去都要经过LB负载均衡器。
NAT方式的实现原理和数据包的改变
(a) 当用户请求到达Director Server,此时请求的数据报文会先到内核空间的PREROUTING链。 此时报文的源IP为CIP,目标IP为VIP
(b) PREROUTING检查发现数据包的目标IP是本机,将数据包送至INPUT链
(c) IPVS比对数据包请求的服务是否为集群服务,若是,修改数据包的目标IP地址为后端服务器IP,然后将数据包发至POSTROUTING链。 此时报文的源IP为CIP,目标IP为RIP
(d) POSTROUTING链通过选路,将数据包发送给Real Server
(e) Real Server比对发现目标为自己的IP,开始构建响应报文发回给Director Server。 此时报文的源IP为RIP,目标IP为CIP
(f) Director Server在响应客户端前,此时会将源IP地址修改为自己的VIP地址,然后响应给客户端。 此时报文的源IP为VIP,目标IP为CIP
LVS-NAT模型的特性
l RS应该使用私有地址,RS的网关必须指向DIP
l DIP和RIP必须在同一个网段内
l 请求和响应报文都需要经过Director Server,高负载场景中,Director Server易成为性能瓶颈
l 支持端口映射
l RS可以使用任意操作系统
l 缺陷:对Director Server压力会比较大,请求和响应都需经过director server
162 LVS集群的工作模式--隧道模式TUN
采用NAT技术时,由于请求和响应的报文都必须经过调度器地址重写,当客户请求越来越多时,调度器的处理能力将成为瓶颈。
为了解决这个问题,调度器把请求的报文通过IP隧道(相当于ipip或ipsec )转发至真实服务器,而真实服务器将响应处理后直接返回给客户端用户,这样调度器就只处理请求的入站报文。
由于一般网络服务应答数据比请求报文大很多,采用 VS/TUN技术后,集群系统的最大吞吐量可以提高10倍。
VS/TUN工作流程,它的连接调度和管理与VS/NAT中的一样,只是它的报文转发方法不同。
调度器根据各个服务器的负载情况,连接数多少,动态地选择一台服务器,将原请求的报文封装在另一个IP报文中,再将封装后的IP报文转发给选出的真实服务器。
真实服务器收到报文后,先将收到的报文解封获得原来目标地址为VIP地址的报文, 服务器发现VIP地址被配置在本地的IP隧道设备上(此处要人为配置),所以就处理这个请求,然后根据路由表将响应报文直接返回给客户。
TUN原理和数据包的改变
(a) 当用户请求到达Director Server,此时请求的数据报文会先到内核空间的PREROUTING链。 此时报文的源IP为CIP,目标IP为VIP 。
(b) PREROUTING检查发现数据包的目标IP是本机,将数据包送至INPUT链
(c) IPVS比对数据包请求的服务是否为集群服务,若是,在请求报文的首部再次封装一层IP报文,封装源IP为为DIP,目标IP为RIP。然后发至POSTROUTING链。 此时源IP为DIP,目标IP为RIP
(d) POSTROUTING链根据最新封装的IP报文,将数据包发至RS(因为在外层封装多了一层IP首部,所以可以理解为此时通过隧道传输)。 此时源IP为DIP,目标IP为RIP
(e) RS接收到报文后发现是自己的IP地址,就将报文接收下来,拆除掉最外层的IP后,会发现里面还有一层IP首部,而且目标是自己的lo接口VIP,那么此时RS开始处理此请求,处理完成之后,通过lo接口送给eth0网卡,然后向外传递。 此时的源IP地址为VIP,目标IP为CIP
(f) 响应报文最终送达至客户端
LVS-Tun模型特性
163 LVS集群的工作模式--FULLNAT
LVS的DR和NAT模式要求RS和LVS在同一个vlan中,导致部署成本过高;TUNNEL模式虽然可以跨vlan,但RealServer上需要部署ipip隧道模块等,网络拓扑上需要连通外网,较复杂,不易运维。
为了解决上述问题,开发出FULLNAT
该模式和NAT模式的区别是:数据包进入时,除了做DNAT,还做SNAT(用户ip->内网ip)
从而实现LVS-RealServer间可以跨vlan通讯,RealServer只需要连接到内网。类比地铁站多个闸机。
17 IPVS调度器实现了如下八种负载调度算法:
a) 轮询(Round Robin)RR
调度器通过"轮叫"调度算法将外部请求按顺序轮流分配到集群中的真实服务器上,它均等地对待每一台服务器,而不管服务器上实际的连接数和系统负载。
b) 加权轮叫(Weighted Round Robin)WRR
调度器通过"加权轮叫"调度算法根据真实服务器的不同处理能力来调度访问请求。这样可以保证处理能力强的服务器处理更多的访问流量。
调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。
c) 最少链接(Least Connections) LC
调度器通过"最少连接"调度算法动态地将网络请求调度到已建立的链接数最少的服务器上。
如果集群系统的真实服务器具有相近的系统性能,采用"最小连接"调度算法可以较好地均衡负载。
d) 加权最少链接(Weighted Least Connections) Wlc
在集群系统中的服务器性能差异较大的情况下,调度器采用"加权最少链接"调度算法优化负载均衡性能,具有较高权值的服务器将承受较大比例的活动连接负载。调度器可以自动问询真实服务器的负载情况,并动态地调整其权值。
e) 基于局部性的最少链接(Locality-Based Least Connections) Lblc
"基于局部性的最少链接" 调度算法是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。
该算法根据请求的目标IP地址找出该目标IP地址最近使用的服务器,若该服务器 是可用的且没有超载,将请求发送到该服务器。
若服务器不存在,或者该服务器超载且有服务器处于一半的工作负载,则用"最少链接"的原则选出一个可用的服务 器,将请求发送到该服务器。
f) 带复制的基于局部性最少链接(Locality-Based Least Connections with Replication)
"带复制的基于局部性最少链接"调度算法也是针对目标IP地址的负载均衡,目前主要用于Cache集群系统。
它与LBLC算法的不同之处是它要维护从一个 目标IP地址到一组服务器的映射,而LBLC算法维护从一个目标IP地址到一台服务器的映射。
该算法根据请求的目标IP地址找出该目标IP地址对应的服务 器组,按"最小连接"原则从服务器组中选出一台服务器,若服务器没有超载,将请求发送到该服务器。
若服务器超载,则按"最小连接"原则从这个集群中选出一 台服务器,将该服务器加入到服务器组中,将请求发送到该服务器。
同时,当该服务器组有一段时间没有被修改,将最忙的服务器从服务器组中删除,以降低复制的 程度。
g) 目标地址散列(Destination Hashing) Dh
"目标地址散列"调度算法根据请求的目标IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器,若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。
h) 源地址散列(Source Hashing)SH
"源地址散列"调度算法根据请求的源IP地址,作为散列键(Hash Key)从静态分配的散列表找出对应的服务器。
若该服务器是可用的且未超载,将请求发送到该服务器,否则返回空。
18 LVS+Keepalived方案实现
181 keepalived功能
1 添加VIP
2 添加LVS配置
3 高可用(VIP漂移)
4 web服务器 健康 检查
182 在负载器安装Keepalived软件
# 检查软件是否安装
183 修改配置文件
lb03上keepalied配置文件
lb04的Keepalied配置文件
keepalived persistence_timeout参数意义 LVS Persistence 参数的作用
http://blogcsdnnet/nimasike/article/details/53911363
184 启动keepalived服务
185 在web服务器上进行配置
注意:web服务器上的配置为临时生效,可以将其写入rclocal文件,注意文件的执行权限。
使用curl命令进行测试
至此keepalived+lvs配置完毕
19 常见LVS负载均衡高可用解决方案
Ø 开发类似keepalived的脚本,早期的办法,现在不推荐使用。
Ø heartbeat+lvs+ldirectord脚本配置方案,复杂不易控制,不推荐使用
Ø RedHat工具piranha,一个web界面配置LVS。
Ø LVS-DR+keepalived方案,推荐最优方案,简单、易用、高效。
191 lvs排错思路
WEB服务器流量超负载问题解决方法
Web应用服务器集群系统,是由一群同时运行同一个web应用的服务器组成的集群系统,在外界看来,就像是一个服务器一样。为了均衡集群服务器的负载,达到优化系统性能的目的,集群服务器将众多的访问请求,分散到系统中的不同节点进行处理。从而实现了更高的有效性和稳定性,而这也正是基于Web的企业应用所必须具备的特性。
一、计算WEB服务器负载量的两种方法
web应用服务器集群系统,是由一群同时运行同一个web应用的服务器组成的集群系统,在外界看来,就像是一个服务器一样。为了均衡集群服务器的负载,达到优化系统性能的目的,集群服务器将众多的访问请求,分散到系统中的不同节点进行处理。从而实现了更高的有效性和稳定性,而这也正是基于Web的企业应用所必须具备的特性。
高可靠性可以看作为系统的一种冗余设定。对于一个特定的请求,如果所申请的服务器不能进行处理的话,那么其他的服务器能不能对之进行有效的处理呢?对于一个高效的系统,如果一个Web服务器失败的话,其他的服务器可以马上取代它的位置,对所申请的请求进行处理,而且这一过程对用户来说,要尽可能的透明,使用户察觉不到!
稳定性决定了应用程序能否支持不断增长的用户请求数量,它是应用程序自身的一种能力。稳定性是影响系统性能的众多因素的一种有效的测量手段,包括机群系统所能支持的同时访问系统的最大用户数目以及处理一个请求所需要的时间。
在现有众多的均衡服务器负载的方法中,广泛研究并使用的是以下两个方法:
DNS负载平衡的方法RR-DNS(Round-Robin Domain Name System)
负载均衡器
以下,我们将就这两种方法进行讨论。
二、DNS轮流排程的优势及缺点
域名服务器(Domain Name Server)中的数据文件将主机名字映射到其IP地址。当你在浏览器中键入一个URL时(例如:wwwloadbalancedsitecom),浏览器则将请求发送到DNS,要求其返回相应站点的IP地址,这被称为DNS查询。当浏览器获得该站点的IP地址后,便通过该IP地址连接到所要访问的站点,将页面展现在用户面前。
域名服务器(DNS)通常包含一个单一的IP地址与该IP地址所映射的站点的名称的列表。在我们上面所假象的例子中,wwwloadbalancedsitecom 这个站点的映射IP地址为20324233。
为了利用DNS均衡服务器的负载,对于同一个站点来讲,在DNS服务器中同时拥有几个不同的IP地址。这几个IP地址代表集群中不同的机器,并在逻辑上映射到同一个站点名。通过我们的例子可以更好的理解这一点,wwwloadbalancedsitecom将通过下面的三个IP地址发布到一个集群中的三台机器上:
20334233
20334234
20334235
在本例中,DNS服务器中包含下面的映射表:
wwwloadbalancedsitecom 20334233
wwwloadbalancedsitecom 20334234
wwwloadbalancedsitecom 20334235
当第一个请求到达DNS服务器时,返回的是第一台机器的IP地址20334233;当第二个请求到达时,返回的是第二台机器的IP地址20334234,以此类推。当第四个请求到达时,第一台机器的IP地址将被再次返回,循环调用。
利用上述的DNS Round Robin技术,对于某一个站点的所有请求将被平均的分配到及群中的机器上。因此,在这种技术中,集群中的所有的节点对于网络来说都是可见的。
DNS 轮流排程的优势
DNS Round Robin的最大的优点就是易于实现和代价低廉:
代价低,易于建立。 为了支持轮流排程,系统管理员只需要在DNS服务器上作一些改动,而且在许多比较新的版本的DNS服务器上已经增加了这种功能。对于Web应用来说,不需要对代码作任何的修改;事实上,Web应用本身并不会意识到负载均衡配置,即使在它面前。
简单 不需要网络专家来对之进行设定,或在出现问题时对之进行维护。
DNS 轮流排程的缺点
这种基于软件的负载均衡方法主要存在两处不足,一是不实时支持服务期间的关联,一是不具有高可靠性。
不支持服务器间的一致性。服务器一致性是负载均衡系统所应具备的一种能力,通过它,系统可以根据会话信息是属于服务器端的,还是底层数据库级别的,继而将用户的请求导向相应的服务器。而DNS轮流排程则不具备这种智能化的特性。它是通过cookie、隐藏域、重写URL三种方法中的一种来进行相似的判断的。当用户通过上述基于文本标志的方法与服务器建立连接之后,其所有的后续访问均是连接到同一个服务器上。问题是,服务器的IP是被浏览器暂时存放在缓存中,一旦记录过期,则需要重新建立连接,那么同一个用户的请求很可能被不同的服务器进行处理,则先前的所有会话信息便会丢失。
不支持高可靠性。设想一个具有N个节点的集群。如果其中的一个节点毁坏,那么所有的访问该节点的请求将不会有所回应,这是任何人都不愿意看到的。比较先进的路由器可以通过每隔一定的时间间隔,对节点检查,如果有毁坏的节点,则将之从列表中去除的方法,解决这个问题。但是,由于在Internet上,ISPs将众多的DNS存放在缓存中,以节省访问时间,因此,DNS的更新就会变得非常缓慢,以至于有的用户可能会访问一些已经不存在的站点,或者一些新的站点得不到访问。所以,尽管DNS轮流排程在一定程度上解决了负载均衡问题,但这种状况的改变并不是十分乐观和有效的。
除了上面介绍的轮流排程方法外,还有三种DNS负载均衡处理分配方法,将这四种方法列出如下:
Round robin (RRS): 将工作平均的分配到服务器 (用于实际服务主机性能一致)
Least-connections (LCS): 向较少连接的服务器分配较多的工作(IPVS 表存储了所有的活动的连接。用于实际服务主机性能一致。)
Weighted round robin (WRRS): 向较大容量的服务器分配较多的工作。可以根据负载信息动态的向上或向下调整。 (用于实际服务主机性能不一致时)
Weighted least-connections (WLC): 考虑它们的容量向较少连接的服务器分配较多的工作。容量通过用户指定的砝码来说明,可以根据装载信息动态的向上或向下调整。(用于实际服务主机性能不一致时)
三:传统负载均衡器的优势及缺点
负载均衡器通过虚拟IP地址方法,解决了轮流排程所面临的许多问题。使用了负载均衡器集群系统,在外部看来,像是具有一个IP地址的单一服务器一样,当然,这个IP地址是虚拟的,它映射了集群中的每一台机器的地址。所以,在某种程度上,负载均衡器是将整个集群的IP地址报漏给外部网络。
当请求到达负载均衡器时,它会重写该请求的头文件,并将之指定到集群中的机器上。如果某台机器被从集群中移除了,请求不会别发往已经不存在的服务器上,因为所有的机器表面上都具有同一个IP地址,即使集群中的某个节点被移除了,该地址也不会发生变化。而且,internet上缓存的DNS条目也不再是问题了。当返回一个应答时
,客户端看到的只是从负载均衡器上所返回的结果。也就是说,客户端操作的对象是负载均衡器,对于其更后端的操作,对客户端来讲,是完全透明的。
传统负载均衡器的优点
服务器一致性 负载均衡器读取客户端发出的每一个请求中所包含的cookies或url解释。基于所读出的这些信息,负载均衡器就可以重写报头并将请求发往集群中合适的节点上,该节点维护着相应客户端请求的会话信息。在HTTP通信中,负载均衡器可以提供服务器一致性,但并不是通过一个安全的途径(例如:HTTPS)来提供这种服务。当消息被加密后(SSL),负载均衡器就不能读出隐藏在其中的会话信息。
通过故障恢复机制获得高可靠性 故障恢复发生在当集群中某个节点不能处理请求,需将请求重新导向到其他节点时。主要有两种故障恢复:
请求级故障恢复。当集群中的一个节点不能处理请求时(通常是由于down机),请求被发送到其他节点。当然,在导向到其他节点的同时,保存在原节点上的会话信息将会丢失。
透明会话故障恢复。当一个引用失败后,负载均衡器会将之发送到集群中其他的节点上,以完成操作,这一点对用户来说是透明的。由于透明会话故障恢复需要节点具备相应的操作信息,因此为了实现该功能,集群中的所有节点必须具有公共存储区域或通用数据库,存储会话信息数据,以提供每个节点在进行单独进程会话故障恢复时所需要的操作信息。
统计计量。既然所有的Web应用请求都必须经过负载均衡系统,那么系统就可以确定活动会话的数量,在任何实例访问中的活动会话的数目,应答的次数,高峰负载次数,以及在高峰期和低谷期的会话的数目,还有其他更多的。所有的这些统计信息都可以被很好的用来调整整个系统的性能。
传统负载均衡器的缺点
硬件路由的缺点在于费用、复杂性以及单点失败的。由于所有的请求均是通过一个单一的硬件负载均衡器来传递,因此,负载均衡器上的任何故障都将导致整个站点的崩溃。
HTTPS请求的负载均衡
正如上面所提到的,很难在那些来自HTTPS的请求上进行负载均衡和会话信息维护处理。因为,这些请求中的信息已经被加密了。负载均衡器没有能力处理这类请求。不过,这里有两种方法可以解决这一问题:
代理网络服务器
硬件SSL解码器
代理服务器位于服务器集群之前,首先由它接受所有的请求并对之进行解密,然后将这些处理后的请求根据头信息重新发往相应的节点上,这种方式不需要硬件上的支持,但会增加代理服务器的额外的负担。
硬件SSL解码器,则是在请求到达负载均衡器之前,先经由它进行解密处理。这种方式比代理服务器的处理速度要快捷一些。但代价也高,而且实现比较复杂。
;参考文章: https://blogcsdnnet/robertsong2004/article/details/36879233
当前工作中遇到了一个问题:测试同事反馈进入某个服务的交互界面很慢,这个情况偶尔会出现。
我猜测可能是服务器的负载较高导致的,但是由于测试反馈的不及时,出现这个现象时我没能看到机器的负载情况,所以目前也只是猜测这个原因而已,具体的我需要尝试复现一下,即提高机器的负载,然后再打开该服务的交互界面看会不会出现慢的情况,看在机器负载高的情况下这种慢的现象是不是必现的。
可以使用如下脚本来提高服务器的cpu使用率,提高机器负载:
编写一个脚本testLoadsh:
vim testLoadsh
网络的负载均衡是一种动态均衡技术,通过一些工具实时地分析数据包,掌握网络中的数据流量状况,把任务合理均衡地分配出去。这种技术基于现有网络结构,提供了一种扩展服务器带宽和增加服务器吞吐量的廉价有效的方法,加强了网络数据处理能力,提高了网络的灵活性和可用性。
云计算的相关技术有哪些不要抽象的。。要实际的技术是什么
1、云计算平台管理技术:云计算系统的平台管理技术能够使大量的服务器协同工作,方便的进行业务部署和开通,快速发现和恢复系统故障。
2、资源管理技术。云计算需要对分布的、海量的数据进行处理、分析,因此,数据管理技术必需能够高效地管理大量的数据。云计算系统的平台管理技术,需要具有高效调配大量服务器资源,使其更好协同工作的能力。能耗管理技术。
3、云计算关键技术主要包括数据储存技术和数据管理技术以及编程模式。
4、云计算的关键技术包括以下几个方向: 虚拟机技术 虚拟机,即服务器虚拟化是云计算底层架构的重要基石。
5、是指通过集群应用、网格技术或分布式文件系统等功能,将网络中大量各种不同类型的存储设备通过应用软件集合起来协同工作,共同对外提供数据存储和业务访问功能的一个系统。
6、现阶段所说的云服务已经不单单是一种分布式计算,而是分布式计算、效用计算、负载均衡、并行计算、网络存储、热备份冗杂和虚拟化等计算机技术混合演进并跃升的结果。
云计算的关键技术有哪些它们各自有哪些作用云计算关键技术主要包括数据储存技术和数据管理技术以及编程模式。
资源管理技术。云计算需要对分布的、海量的数据进行处理、分析,因此,数据管理技术必需能够高效地管理大量的数据。云计算系统的平台管理技术,需要具有高效调配大量服务器资源,使其更好协同工作的能力。能耗管理技术。
云计算的关键技术包括以下几个方向: 虚拟机技术 虚拟机,即服务器虚拟化是云计算底层架构的重要基石。
云计算的核心技术有虚拟化、分布式文件系统、分布式数据库、资源管理技术、能耗管理技术、信息安全等。
Cloud Computing关键技术分别为:FO软件开发方法。这是在“面向对象”之上做了进一步抽象后地软件开发方法,其目地是为了解决Cloud Computing软件系统所面临地更加严重地软件危机问题。
与云计算、云存储相关的IT技术都有哪些1、云计算的五大关键技术如下:云计算平台管理技术、分布式计算的编程模式、分布式海量数据存储、海量数据管理技术、虚拟化技术。
2、云计算关键技术主要包括数据储存技术和数据管理技术以及编程模式。
3、能耗管理技术。云计算的好处显而易见,但随着其规模越来越大,云计算本身的能耗越来越不可忽视。提高能效的第一步是升级网络设备,增加节能模式,减少网络设施在未被充分使用时的耗电量。
4、在云计算系统中运用了许多技术,其中以编程模型、数据管理技术、数据存储技术、虚拟化技术、云计算平台管理技术更为关键。
云空间由多台什么提供负载均衡1、云空间也可以叫云服务器或者云主机,是云计算在基础设施应用上的重要组成部分;它由多台服务器提供负载均衡,资源网站实际按需要进行动态分配。
2、云空间(Cloud hosting),计算机科学术语,由多台服务器提供负载均衡,资源网站实际按需要进行动态分配,适合网站比较多或者是网站建设公司。
3、云空间[1](Cloudhosting)也就是大容量云空间集合,由多台服务器提供负载均衡,资源网站实际按需要进行动态分配,适合网站比较多或者是网站建设公司,比VPS性能强,价格更便宜。
4、华为云空间主要是存储用户手机中的所有数据。在手机的云空间,可以安全存储用户的照片、视频、联系人等重要数据,并且在用户的各个设备上保持实时更新。
5、共同对外提供数据存储和业务访问功能的系统。
6、Cloud hosting也就是大容量云空间集合,由多台服务器提供负载均衡,资源网站实际按需要进行动态分配,适合网站比较多或者是网站建设公司,比VPS性能强,价格更便宜。
云计算关键技术是什么1、云计算是分布式处理、并行计算和网格计算等概念的发展和商业实现,其技术实质是计算、存储、服务器、应用软件等IT软硬件资源的虚拟化,云计算在虚拟化、数据存储、数据管理、编程模式等方面具有自身独特的技术。
2、云计算的五大关键技术如下:云计算平台管理技术、分布式计算的编程模式、分布式海量数据存储、海量数据管理技术、虚拟化技术。
3、虚拟化是云计算最重要的核心技术之一,它为云计算服务提供基础架构层面的支撑,是ICT服务快速走向云计算的最主要驱动力。很多人对云计算和虚拟化的认识都存在误区,认为云计算就是虚拟化。
0条评论