阿里云服务器和腾讯云服务器哪个好
阿里云:
适合人群:中小企业
优点:阿里云依托于阿里巴巴集团,通过对其丰富的网络资源进行整合,拥有自己的数据中心,是国内云服务器的大佬,品牌名气较大。阿里云的国际输出速度快。目前,有北京、青岛、杭州、香港机房可选,多线BGP接入;
缺点:价格相对较贵,硬盘I/O速度较差,硬盘不能直接扩容大小,必须新购买硬盘迁移数据。
腾讯云:
适合人群:游戏客户、开发者、APP用户等。
优点:腾讯云跟微信对接有天然优势,目前用户主要以游戏应用为主。腾讯云服务器使用公共平台操作系统,团队完全负责云主机的维护,并提供丰富配置类型虚拟机,用户可以便捷地进行数据缓存、数据库处理与搭建web服务器等工作。腾讯对游戏和移动应用类客户提供了较强的扶持政策,比较适合这类型的客户使用。
缺点:普通中小客户和中网站客户难以通过审批,腾讯提供的配套设备也不适合这部分客户使用。
1云服务器ECS
云服务器ECS:云计算产品的基本款,几乎每个客户都必买的,云服务器从1核1G到32核64G(随着时间推移,配置会越来越高),各种优惠都有,不同时段有不同的优惠活动,可以参考阿里云惠网;关于服务器配置还可以随意升降配置,可以包年包月,也可以按量随用随买。对于很多小公司及个人,只购买一台云服务器ECS就够用了。对于稍微大一点的企业从性能、安全、加载速度等方面诸多考虑,可能需要购买其他的阿里云产品。
阿里云从云服务器ECS衍生出来很多云服务器系列,例如适用于初级用户的轻量应用服务器,还有为了迎合各种高性能场景的云服务器,诸如GPU云服务器、FPGA云服务器、神龙云服务器等,总之都是云服务器,是企业上云的基本款。
2云数据库RDS
云数据库:目前主流是MySQL,阿里云提供MySQL、PostgreSQL,SQL Server,MongoDB,Memcache(Redis)等不同的数据库产品。相对于云服务器,云数据库属于非必需品,因为用户完全可以在云服务器上搭建数据库。由于自身业务发展需要,将数据库独立出来,这时候就需要阿里云的RDS云数据库了。
3负载均衡SLB
负载均衡SLB:对多台云服务器进行流量分发服务。为了应对业务需求,企业往往会有多台云服务器提供服务器,负载均衡就是将用户的请求按照企业自定义的策略转发到最优的服务器。
4对象存储OSS
如果企业静态文件较多(、视频等大文件),可以将大量的存储内容转移独立出来,放到对象存储OSS里面。
5CDN
内容分发网络,假设企业的云服务器在杭州,那么位于东北地区的用户访问速度就会比较慢,CDN可以解决这个问题,CDN将源站内容分发至最接近用户的节点,使用户可就近取得所需内容,提高用户访问的响应速度和成功率。
6专有网络 VPC
大家普遍会给阿里云打上公有云的标签,实际上阿里云可以提供的不仅仅是公有云,还有私有云、混合云等。专有网络VPC可以帮助企业在阿里云构建出一个隔离的网络环境,用户可以自定义IP 地址范围、网段、路由表和网关等,VPC可以提供更安全和灵活的网络环境,为我们构建混合云提供服务。
7弹性伸缩
传统的企业自建的私有机房是不具有弹性伸缩功能的,假设企业遇到业务波峰,只能通过人为的升级硬件来应对,业务回落时就会造成硬件资源的浪费,而弹性伸缩很好的解决了这个痛点。阿里云弹性伸缩可以管理您的集群,在高峰期自动增加ECS实例,在业务回落时自动减少ECS实例,节省基础设施成本。另外,这个弹性伸缩是免费的。
8DDoS高防IP
DDoS是目前比较常见的攻击方式,为了抵御DDoS攻击,用户可以通过配置高防IP,将攻击流量引流到高防IP,确保源站的稳定可靠。讲真,阿里云的DDoS高防IP还挺贵的。
9安骑士
当用户购买了云服务器ECS后,可能会受到阿里云发送的安骑士漏洞风险短信,安骑士一款主机安全软件,为您提供主机漏洞检测、基线检查、病毒查杀、资产统一管理等功能,为您建立安全运维管理平台。安骑士企业版可以免费试用7天,之后想再使用,是需要付费的。
10证书服务
我们在访问网站时,会在浏览器的地址栏中看到绿色的锁,意思是该网站是基于HTTPS协议的。前几年网站基本上都是基于http协议,阿里云百科网目前还是基于http协议,相对于http协议,https提供了一层加密服务,会更加安全一些。网站想要实现HTTPS,可以向阿里云申请签发证书服务器,即我们常说的SSL证书。阿里云目前可以申请到免费的SSL证书(Symantec赛门铁克品牌)。
11态势感知
态势感知说起来还比较高端,有点类似于先知的意思。态势感知会收集企业20种原始日志和网络空间威胁情报,利用机器学习还原已发生的攻击,并预测未发生的攻击,帮客户扩大安全可见性,并集中管理云上资产安全事件。
12堡垒机
日防夜防家贼难防,开个玩笑哈。企业往往更加关注外部的安全威胁而忽略了企业内部,实际上运维人员误操作或者仿冒运维人员将对企业造成很严重的损失,更有甚至是致命的。例如:携程的宕机12小时事件,由于员工错误操作,删除了服务器代码,据不完全统计,携程宕机带来的直接损失就是每小时160万美金。堡垒机基于协议正向代理实现,对SSH、Windows远程桌面、SFTP等常见运维协议的 数据流进行全程记录,再通过协议数据流重组的方式进行录像回放,达到运维审计的目的。
13消息队列MQ
说起消息队列,最典型的应用场景就是一年一度的双十一购物节,消息队列是一个真正具备低延迟、高并发、高可用、高可靠,可支撑万亿级数据洪峰的分布式消息中间件。当小仙女们开启大规模的剁手模式时,用户大量并发访问商品数据库,消息队列可以缓解瓶颈,减少页面响应时间,当然还有其他方面的功能优势,咱这里阿里云百科网就不过多赘述,双十一就是MQ的典型应用场景,大概就是这么个意思。
14域名
域名与主机ip绑定,通过域名解析访问到主机上的服务,主要是简单易记,相当于别名。
15虚拟主机
新手建站一般都是从虚拟主机开始的,无需自己配置web环境,简单易管理,价格也便宜。
16企业邮箱
企业邮箱就是以公司域名为后缀的邮箱,企业自建的邮件系统。目前各大互联网大佬,例如:阿里云、腾讯云、网易等都有提供免费版的企业邮箱,如果想解除诸多限制,可以选购阿里云的企业邮箱付费版。
17云解析DNS
DNS就是将你的域名解析到服务器的IP上,一般来讲域名解析是免费的,免费版就够用了。
安全配置基线一方面是防范内外部恶意攻击的重要手段,也作为最基本的安全防护标准,同时生产服务器安全基线的变化也是发现恶意攻击/行为的重要手段,特别是当各种主动防御设备(防火墙、防病毒软件、入侵检测系统等)均被绕过时,往往安全基线设置是否严格以及是否产生变化成为防范恶意攻击的最后一道防线。
应该是你网站被攻击了,如DDOS/CC攻击这些都是消耗你服务器资源的。解决办法是购买阿里云高防IP,防火墙。不过阿里云的价格贵死。推荐你用百度云加速的吧。
百度云加速是百度旗下为网站提供一站式加速、安全防护和搜索引擎优化的产品。百度云加速是市场占有率最高的云加速产品之一,正为数十万用户的近百万网站提供CDN、网络安全和SEO服务。每天处理十亿级的PV流量及数百亿TB的数据流量,并提供市场顶尖水平的稳定性和抗攻击能力。
百度云加速以部署于骨干网的数据中心为支撑,结合百度深度学习技术,为您的网站提供性能和流量优化,致力与广大开发者一起于打造开放、安全的云服务生态系统。 我们希望更多的网站合作伙伴以及中小企业能受益于百度云加速带来的价值及红利,从而使得云生态能够更加良性的发展。
百度云加速为用户提下以下三大类功能:
1、网站加速
百度云加速节点遍布全中国,通过智能DNS解析等技术,将访问网站的用户引导至最快的节点,通过动静态加速及页面优化技术,极大的提高网站的访问速度和用户体验。此外,还可以大量节省网站自身的服务计算和带宽资源。
2、安全防护
百度云加速可以同时防护包括SQL注入、XSS、Web服务器漏洞、应用程序漏洞以及文件访问控制等问题在内的十多种黑客渗透攻击和SYN Flood、UDP Flood、ICMP Flood、TCP Flood以及CC在内的多种DDoS攻击。
3、SEO
百度云加速的百度蜘蛛DNS同步功能,可以做到和百度蜘蛛实时同步DNS信息,保证百度蜘蛛的正常抓取,保证搜索引擎权重的稳定性;通过死链自动提交、sitemap自动提交,及时收录网站信息,提高网站索引量。
能搭建起来,也能玩,突发性能,不建议用在游戏上面,突发性能不适合长期基线运行,一单时间长,就会出现卡顿反应慢,建议选择计算型或者高主频型的。服务器选配技巧,可以百度搜索 云哔哩 站点去看
基线调平的方法如下:
1、第一步我们首先得打开origin80,然后得在绘制界面中画出曲线,让曲线数据asceding即上调,然后再让基线不平。
2、第二部我们点击主界面的analysis,选择PeaksandBaseline—>PeakAnalyzer—>OpenDialog就可以打开对话窗口了。然后我们点击SubstractBaseline(定基线),就可以手动扣基线了。
然后再“Method”里选择“Autocreate”,然后点击“next”,“pointsofbaseline”里面的点可以改变,然后在点击“Apply”。
3、第三步我们点击“modify/del”修改或删除点。然后就可以去调整基线d点的位置,调到合适的位置,调整完,点“done”。直到基点位置定好后,则点击Subtract进行扣基线,即可得到水平基线。之后点击Finish即完成基线的拉平过程。
扩展资料:
Origin是由OriginLab公司开发的一个科学绘图、数据分析软件,支持在MicrosoftWindows下运行。Origin支持各种各样的2D/3D图形。
Origin中的数据分析功能包括统计,信号处理,曲线拟合以及峰值分析。Origin中的曲线拟合是采用基于Levernberg-Marquardt算法(LMA)的非线性最小二乘法拟合。
Origin强大的数据导入功能,支持多种格式的数据,包括ASCII、Excel、NITDM、DIADem、NetCDF、SPC等等。图形输出格式多样,例如JPEG,GIF,EPS,TIFF等。内置的查询工具可通过ADO访问数据库数据。
Origin是一个具有电子数据表前端的图形化用户界面软件。与常用的电子制表软件不同,如Excel。Origin的工作表是以列为对象的,每一列具有相应的属性,例如名称,数量单位,以及其他用户自定义标识。
Origin以列计算式取代数据单元计算式进行计算。Origin可使用自身的脚本语言(LabTalk)去控制软件,该语言可使用OriginC进行扩展。OriginC是内置的基于C/C++的编译语言。
值得注意的是,Origin可以作为一个COM服务器,通过VBNET,C#,LabVIEW等程序进行调用。
-Origin80实用教程
建立网络基线,前期准备工作包括以下几个部份:
1) 网络拓扑结构图:在结构图里,要力求完整展示网络的物理结构,详细标识出网络中路由器、交换机、防火墙、服务器类型、管理设备的位置;甚至数据流向等;
2) 了解网络现有的管理策略,网络配置情况,对哪些服务、访问做了优化和管理;
3) 掌握确定网络的繁忙时段、业务高峰时段、空闲时段等;
4) 将上述3点形成翔实的文档。 确定范围和目标 建立网络基线最重要的就是要确定基线的范围和目标(基线参数)。网络是复杂的,我们不可能也很难将所有设备、主机或链路的信息全部加入到基线里来,这就需要管理者按其重要程度对网络进行划分,然后确定建立基线的范围; 而且不同的设备、主机或链路所关注的参数也不尽相同,比如服务器更多的是关注安全和性能,网络则是流量、利用率等,这些都需要管理员在录入基线数据之前就确定好。
具体来说,本文包括以下内容:
事务
查询性能
用户和查询冲突
容量
配置
NoSQL 数据库
事务
事务可以观察真实用户的行为:能够在应用交互时捕获实时性能。众所周知,测量事务的性能包括获取整个事务的响应时间和组成事务的各个部分的响应时间。通常我们可以用这些响应时间与满足事务需求的基线对比,来确定当前事务是否处于正常状态。
如果你只想衡量应用的某个方面,那么可以评估事务的行为。所以,尽管容器指标能够提供更丰富的信息,并且帮助你决定何时对当前环境进行自动测量,但你的事务就足以确定应用性能。无需向应用程序服务器获取 CPU 的使用情况,你更应该关心用户是否完成了事务,以及该事务是否得到了优化。
补充一个小知识点,事务是由入口点决定的,通过该入口点可以启动事务与应用进行交互。
一旦定义了事务,会在整个应用生态系统中对其性能进行测量,并将每个事务与基线进行比对。例如,我们可能会决定当事务的响应时间与基线相比,一旦慢于平均响应时间的两个标准差是否就应该判定为异常,如图1所示。
图1-基于基线评估当前事务响应时间用于评估事务的基线与正在进行的事务活动在时间上是一致的,但事务会由每个事务执行来完善。例如,当你选定一个基线,在当前事务结束之后,将事务与平均响应时间按每天的小时数和每周的天数进行对比,所有在那段时间内执行的事务都将会被纳入下周的基线中。通过这种机制,应用程序可以随时间而变化,而无需每次都重建原始基线;你可以将其看作是一个随时间移动的窗口。
总之,事务最能反映用户体验的测量方法,所以也是衡量性能状况最重要的指标。
查询性能
最容易检测到查询性能是否正常的指标就是查询本身。由查询引起的问题可能会导致时间太长而无法识别所需数据或返回数据。所以不妨在查询中排查以下问题。
1 选择过多冗余数据
编写查询语句来返回适当的数据是远远不够的,很可能你的查询语句会返回太多列,从而导致选择行和检索数据变得异常缓慢。所以,最好是列出所需的列,而不是直接用 SELECT。当需要在特定字段中查询时,该计划可能会确定一个覆盖索引从而加快结果返回。覆盖索引通常会包含查询中使用的所有字段。这意味着数据库可以仅从索引中产生结果,而不需要通过底层表来构建。
另外,列出结果中所需的列不仅可以减少传输的数据,还能进一步提高性能。
2 表之间的低效联接
联接会导致数据库将多组数据带到内存中进行比较,这会产生多个数据库读取和大量 CPU。根据表的索引,联接还可能需要扫描两个表的所有行。如果写不好两个大型表之间的联接,就需要对每个表进行完整扫描,这样的计算量将会非常大。其他会拖慢联接的因素包括联接列之间存在不同的数据类型、需要转换或加入包含 LIKE 的条件,这样就会阻止使用索引。另外,还需注意避免使用全外联接;在恰当的时候使用内部联接只返回所需数据。
3 索引过多或过少
如果查询优化没有可用的索引时,数据库会重新扫描表来产生查询结果,这个过程会生成大量的磁盘输入/输出(I/O)。适当的索引可以减少排序结果的需要。虽然非唯一值的索引在生成结果时,不能像唯一索引那样方便。如果键越大,索引也会变大,并通过它们创建更多的磁盘 I/O。大多数索引是为了提高数据检索的性能,但也需要明白索引本身也会影响数据的插入和更新,因为所有相关联的指标都必须更新。
4 太多的SQL导致争用解析资源
任何 SQL 查询在执行之前都必须被解析,在生成执行计划之前需要对语法和权限进行检查。由于解析非常耗时,数据库会保存已解析的 SQL 来重复利用,从而减少解析的耗时。因为 WHERE 语句不同,所以使用文本值的查询语句不能被共享。这将导致每个查询都会被解析并添加到共享池中,由于池的空间有限,一些已保存的查询会被舍弃。当这些查询再次出现时,则需要重新解析。
用户和查询冲突
数据库支持多用户,但多用户活动也可能造成冲突。
1 由慢查询导致的页/行锁定
为了确保查询产生精确的结果,数据库必须锁定表以防止在运行读取查询时再发生其他的插入和更新行为。如果报告或查询相当缓慢,需要修改值的用户可能需要等待至更新完成。锁提示能帮助数据库使用最小破坏性的锁。从事务数据库中分离报表也是一种可靠的解决方法。
2 事务锁和死锁
当两个事务被阻塞时会出现死锁,因为每一个都需要使用被另一个占用的资源。当出现一个普通锁时,事务会被阻塞直到资源被释放。但却没有解决死锁的方案。数据库会监控死锁并选择终止其中一个事务,释放资源并允许该事务继续进行,而另一个事务则回滚。
3 批处理操作造成资源争夺
批处理过程通常会执行批量操作,如大量的数据加载或生成复杂的分析报告。这些操作是资源密集型的,但可能影响在线用户的访问应用的性能。针对此问题最好的解决办法是确保批处理在系统使用率较低时运行,比如晚上,或用单独的数据库进行事务处理和分析报告。
容量
并不是所有的数据库性能问题都是数据库问题。有些问题也是硬件不合适造成的。
1 CPU 不足或 CPU 速度太慢
更多 CPU 可以分担服务器负载,进一步提高性能。数据库的性能不仅是数据库的原因,还受到服务器上运行其他进程的影响。因此,对数据库负载及使用进行审查也是必不可少的。由于 CPU 的利用率时时在变,在低使用率、平均使用率和峰值使用率的时间段分别检查该指标可以更好地评估增加额外的 CPU 资源是否有益。
2 IOPS 不足的慢磁盘
磁盘性能通常以每秒输入/输出操作(IOPS)来计。结合 I/O 大小,该指标可以衡量每秒的磁盘吞吐量是多少兆。同时,吞吐量也受磁盘的延迟影响,比如需要多久才能完成请求,这些指标主要是针对磁盘存储技术而言。传统的硬盘驱动器(HDD)有一个旋转磁盘,通常比固态硬盘(SSD)或闪存更慢。直到近期,SSD 虽然仍比 HDD 贵,但成本已经降了下来,所以在市场上也更具竞争力。
3 全部或错误配置的磁盘
众所周知,数据库会被大量磁盘访问,所以不正确配置的磁盘可能带来严重的性能缺陷。磁盘应该适当分区,将系统数据目录和用户数据日志分开。高度活跃的表应该区分以避免争用,通过在不同磁盘上存放数据库和索引增加并行放置,但不要将操作系统和数据库交换空间放置在同一磁盘上。
4 内存不足
有限或不恰当的物理内存分配会影响数据库性能。通常我们认为可用的内存更多,性能就越好。监控分页和交换,在多个非繁忙磁盘中建立多页面空间,进一步确保分页空间分配足够满足数据库要求;每个数据库供应商也可以在这个问题上提供指导。
5 网速慢
网络速度会影响到如何快速检索数据并返回给终端用户或调用过程。使用宽带连接到远程数据库。在某些情况下,选择 TCP/IP 协议而不是命名管道可显著提高数据库性能。
配置
每个数据库都需设置大量的配置项。通常情况下,默认值可能不足以满足数据库所需的性能。所以,检查所有的参数设置,包括以下问题。
1 缓冲区缓存太小
通过将数据存储在内核内存,缓冲区缓存可以进一步提高性能同时减少磁盘 I/O。当缓存太小时,缓存中的数据会更频繁地刷新。如果它再次被请求,就必须从磁盘重读。除了磁盘读取缓慢之外,还给 I/O 设备增添了负担从而成为瓶颈。除了给缓冲区缓存分配足够的空间,调优 SQL 查询可以帮助其更有效地利用缓冲区缓存。
2 没有查询缓存
查询缓存会存储数据库查询和结果集。当执行相同的查询时,数据会在缓存中被迅速检索,而不需要再次执行查询。数据会更新失效结果,所以查询缓存是唯一有效的静态数据。但在某些情况下,查询缓存却可能成为性能瓶颈。比如当锁定为更新时,巨大的缓存可能导致争用冲突。
3 磁盘上临时表创建导致的 I/O 争用
在执行特定的查询操作时,数据库需要创建临时表,如执行一个 GROUP BY 子句。如果可能,在内存中创建临时表。但是,在某些情况下,在内存中创建临时表并不可行,比如当数据包含 BLOB 或 TEXT 对象时。在这些情况下,会在磁盘上创建临时表。大量的磁盘 I / O 都需要创建临时表、填充记录、从表中选择所需数据并在查询完成后舍弃。为了避免影响性能,临时数据库应该从主数据库中分离出来。重写查询还可以通过创建派生表来减少对临时表的需求。使用派生表直接从另一个 SELECT 语句的结果中选择,允许将数据加到内存中而不是当前磁盘上。
NoSQL 数据库
NoSQL 的优势在于它处理大数据的能力非常迅速。但是在实际使用中,也应该综合参考 NoSQL 的缺点,从而决定是否适合你的用例场景。这就是为什么NoSQL通常被理解为 「不仅仅是 SQL」,说明了 NoSQL 并不总是正确的解决方案,也没必要完全取代 SQL,以下分别列举出五大主要原因。
1 挑剔事务
难以保持 NoSQL 条目的一致性。当访问结构化数据时,它并不能完全确保同一时间对不同表的更改都生效。如果某个过程发生崩溃,表可能会不一致。一致事务的典型代表是复式记账法。相应的信贷必须平衡每个借方,反之亦然。如果双方数据不一致则不能输入。NoSQL 则可能无法保证「收支平衡」。
2 复杂数据库
NoSQL 的支持者往往以高效代码、简单性和 NoSQL 的速度为傲。当数据库任务很简单时,所有这些因素都是优势。但当数据库变得复杂,NoSQL 会开始分解。此时,SQL 则比 NoSQL 更好地处理复杂需求,因为 SQL 已经成熟,有符合行业标准的接口。而每个 NoSQL 设置都有一个唯一的接口。
3 一致联接
当执行 SQL 的联接时,由于系统必须从不同的表中提取数据进行键对齐,所以有一个巨大的开销。而 NoSQL 似乎是一个空想,因为缺乏联接功能。所有的数据都在同一个表的一个地方。当检索数据时,它会同时提取所有的键值对。问题在于这会创建同一数据的多个副本。这些副本也必须更新,而这种情况下,NoSQL 没有功能来确保更新。
4 Schema设计的灵活性
由于 NoSQL 不需要 schema,所以在某些情况下也是独一无二的。在以前的数据库模型中,程序员必须考虑所有需要的列能够扩展,能够适应每行的数据条目。在 NoSQL 下,条目可以有多种字符串或者完全没有。这种灵活性允许程序员迅速增加数据。但是,也可能存在问题,比如当有多个团体在同一项目上工作时,或者新的开发团队接手一个项目时。开发人员能够自由地修改数据库,也可能会不断实现各种各样的密钥对。
5 资源密集型
NoSQL 数据库通常比关系数据库更加资源密集。他们需要更多的 CPU 储备和 RAM 分配。出于这个原因,大多数共享主机公司都不提供 NoSQL。你必须注册一个 VPS 或运行自己的专用服务器。另一方面,SQL 主要是在服务器上运行。初期的工作都很顺利,但随着数据库需求的增加,硬件必须扩大。单个大型服务器比多个小型服务器昂贵得多,价格呈指数增长。所以在这种企业计算场景下,使用 NoSQL 更为划算,例如那些由谷歌和 Facebook 使用的服务器。
0条评论