配置hadoop集群中启动journalnode的作用是什么?

配置hadoop集群中启动journalnode的作用是什么?,第1张

为了使Standby节点保持其状态与Active 节点同步,两个节点都与一组称为"JournalNodes"(JN)的单独守护进程进行通信。当Active 节点执行任何命名空间修改时,它会持久地将修改记录记录到这些JN的大多数中。Standby节点能够从JN读取edit log内容,并不断监视它们以查看edit log内容的更改。当“Standby节点”看到edit log变化时,会将其应用到自己的命名空间。发生故障转移时,备用服务器将确保在将自身升级为活跃状态之前,已从JournalNode读取所有edit log内容。这样可确保在发生故障转移之前,命名空间状态已经完全同步

你的配置文件mapred-sitexml有问题,估计是哪个配置项写错了,是否可以将此文件内容贴出来看看,最简单的情况下mapred-sitexml的配置如下,一个自定义选项即可,以下是伪分布式或者单机部署配置,分布式将<value>修改为你的jobtracker节点即可。

<configuration>

<property>

<name>mapredjobtracker</name>

<value>localhost:9001</value>

</property>

</configuration>

1 Hadoop HA架构详解

11 HDFS HA背景

HDFS集群中NameNode 存在单点故障(SPOF)。对于只有一个NameNode的集群,如果NameNode机器出现意外情况,将导致整个集群无法使用,直到NameNode 重新启动。

影响HDFS集群不可用主要包括以下两种情况:一是NameNode机器宕机,将导致集群不可用,重启NameNode之后才可使用;二是计划内的NameNode节点软件或硬件升级,导致集群在短时间内不可用。

为了解决上述问题,Hadoop给出了HDFS的高可用HA方案:HDFS通常由两个NameNode组成,一个处于active状态,另一个处于standby状态。Active NameNode对外提供服务,比如处理来自客户端的RPC请求,而Standby NameNode则不对外提供服务,仅同步Active NameNode的状态,以便能够在它失败时快速进行切换。

12 HDFS HA架构

一个典型的HA集群,NameNode会被配置在两台独立的机器上,在任何时间上,一个NameNode处于活动状态,而另一个NameNode处于备份状态,活动状态的NameNode会响应集群中所有的客户端,备份状态的NameNode只是作为一个副本,保证在必要的时候提供一个快速的转移。

为了让Standby Node与Active Node保持同步,这两个Node都与一组称为JNS的互相独立的进程保持通信(Journal Nodes)。当Active Node上更新了namespace,它将记录修改日志发送给JNS的多数派。Standby noes将会从JNS中读取这些edits,并持续关注它们对日志的变更。Standby Node将日志变更应用在自己的namespace中,当failover发生时,Standby将会在提升自己为Active之前,确保能够从JNS中读取所有的edits,即在failover发生之前Standy持有的namespace应该与Active保持完全同步。

为了支持快速failover,Standby node持有集群中blocks的最新位置是非常必要的。为了达到这一目的,DataNodes上需要同时配置这两个Namenode的地址,同时和它们都建立心跳链接,并把block位置发送给它们。

任何时刻,只有一个Active NameNode是非常重要的,否则将会导致集群操作的混乱,那么两个NameNode将会分别有两种不同的数据状态,可能会导致数据丢失,或者状态异常,这种情况通常称为“split-brain”(脑裂,三节点通讯阻断,即集群中不同的Datanodes却看到了两个Active NameNodes)。对于JNS而言,任何时候只允许一个NameNode作为writer;在failover期间,原来的Standby Node将会接管Active的所有职能,并负责向JNS写入日志记录,这就阻止了其他NameNode基于处于Active状态的问题。

基于QJM的HDFS HA方案如上图所示,其处理流程为:集群启动后一个NameNode处于Active状态,并提供服务,处理客户端和DataNode的请求,并把editlog写到本地和share editlog(这里是QJM)中。另外一个NameNode处于Standby状态,它启动的时候加载fsimage,然后周期性的从share editlog中获取editlog,保持与Active节点的状态同步。为了实现Standby在Active挂掉后迅速提供服务,需要DataNode同时向两个NameNode汇报,使得Stadnby保存block to DataNode信息,因为NameNode启动中最费时的工作是处理所有DataNode的blockreport。为了实现热备,增加FailoverController和Zookeeper,FailoverController与Zookeeper通信,通过Zookeeper选举机制,FailoverController通过RPC让NameNode转换为Active或Standby。

13 HDFS HA配置要素

NameNode机器:两台配置对等的物理机器,它们分别运行Active和Standby Node。

JouralNode机器:运行JouralNodes的机器。JouralNode守护进程相当的轻量级,可以和Hadoop的其他进程部署在一起,比如NameNode、DataNode、ResourceManager等,至少需要3个且为奇数,如果你运行了N个JNS,那么它可以允许(N-1)/2个JNS进程失效并且不影响工作。

在HA集群中,Standby NameNode还会对namespace进行checkpoint操作(继承Backup Namenode的特性),因此不需要在HA集群中运行SecondaryNameNode、CheckpointNode或者BackupNode。

14 HDFS HA配置参数

需要在hdfsxml中配置如下参数:

dfsnameservices:HDFS NN的逻辑名称,例如myhdfs。

dfshanamenodesmyhdfs:给定服务逻辑名称myhdfs的节点列表,如nn1、nn2。

dfsnamenoderpc-addressmyhdfsnn1:myhdfs中nn1对外服务的RPC地址。

dfsnamenodehttp-addressmyhdfsnn1:myhdfs中nn1对外服务http地址。

dfsnamenodesharededitsdir:JournalNode的服务地址。

dfsjournalnodeeditsdir:JournalNode在本地磁盘存放数据的位置。

dfshaautomatic-failoverenabled:是否开启NameNode失败自动切换。

dfshafencingmethods :配置隔离机制,通常为sshfence。

15 HDFS自动故障转移

HDFS的自动故障转移主要由Zookeeper和ZKFC两个组件组成。

Zookeeper集群作用主要有:一是故障监控。每个NameNode将会和Zookeeper建立一个持久session,如果NameNode失效,那么此session将会过期失效,此后Zookeeper将会通知另一个Namenode,然后触发Failover;二是NameNode选举。ZooKeeper提供了简单的机制来实现Acitve Node选举,如果当前Active失效,Standby将会获取一个特定的排他锁,那么获取锁的Node接下来将会成为Active。

ZKFC是一个Zookeeper的客户端,它主要用来监测和管理NameNodes的状态,每个NameNode机器上都会运行一个ZKFC程序,它的职责主要有:一是健康监控。ZKFC间歇性的ping NameNode,得到NameNode返回状态,如果NameNode失效或者不健康,那么ZKFS将会标记其为不健康;二是Zookeeper会话管理。当本地NaneNode运行良好时,ZKFC将会持有一个Zookeeper session,如果本地NameNode为Active,它同时也持有一个“排他锁”znode,如果session过期,那么次lock所对应的znode也将被删除;三是选举。当集群中其中一个NameNode宕机,Zookeeper会自动将另一个激活。

16 YARN HA架构

YARN的HA架构和HDFSHA类似,需要启动两个ResourceManager,这两个ResourceManager会向ZooKeeper集群注册,通过ZooKeeper管理它们的状态(Active或Standby)并进行自动故障转移。

2 高可用集群规划

21 集群规划

根据Hadoop的HA架构分析,规划整个集群由5台主机组成,具体情况如下表所示:

主机名

IP地址

安装的软件

JPS

hadoop-master1

172162081

Jdk/hadoop

Namenode/zkfc/resourcemanager/

JobHistoryServer

hadoop-master2

172162082

Jdk/hadoop

Namenode/zkfc/resourcemanager/

WebProxyServer

hadoop-slave1

172162083

Jkd/hadoop/zookeepe

Datanode/journalnode/nodemanager/

quorumPeerMain

hadoop-slave2

172162084

Jkd/hadoop/zookeeper

Datanode/journalnode/nodemanager/

quorumPeerMain

hadoop-slave3

172162085

Jkd/hadoop/zookeeper

Datanode/journalnode/nodemanager/

quorumPeerMain

需要说明以下几点:

HDFS HA通常由两个NameNode组成,一个处于Active状态,另一个处于Standby状态。Active NameNode对外提供服务,而Standby NameNode则不对外提供服务,仅同步Active NameNode的状态,以便能够在它失败时快速进行切换。

Hadoop 20官方提供了两种HDFS HA的解决方案,一种是NFS,另一种是QJM。这里我们使用简单的QJM。在该方案中,主备NameNode之间通过一组JournalNode同步元数据信息,一条数据只要成功写入多数JournalNode即认为写入成功。通常配置奇数个JournalNode,这里还配置了一个Zookeeper集群,用于ZKFC故障转移,当Active NameNode挂掉了,会自动切换Standby NameNode为Active状态。

YARN的ResourceManager也存在单点故障问题,这个问题在hadoop-241得到了解决:有两个ResourceManager,一个是Active,一个是Standby,状态由zookeeper进行协调。

YARN框架下的MapReduce可以开启JobHistoryServer来记录历史任务信息,否则只能查看当前正在执行的任务信息。

Zookeeper的作用是负责HDFS中NameNode主备节点的选举,和YARN框架下ResourceManaer主备节点的选举。

22 软件版本

操作系统:CentOS Linux release 701406

JDK:Java(TM)SE Runtime Environment (build 170_79-b15)

Hadoop:Hadoop 260-cdh571

ZooKeeper:zookeeper-345-cdh571

3 Linux环境准备

集群各节点进行如下修改配置:

31 创建用户并添加权限

// 切换root用户

$ su root

// 创建hadoop用户组

# groupadd hadoop

// 在hadoop用户组中创建hadoop用户

# useradd -g hadoop hadoop

// 修改用户hadoop密码

# passwd hadoop

// 修改sudoers配置文件给hadoop用户添加sudo权限

# vim /etc/sudoers

hadoop    ALL=(ALL)       ALL

// 测试是否添加权限成功

# exit

$ sudo ls /root

32 修改IP地址和主机名

// 切换root用户

$ su root

// 修改本机IP地址

# vim /etc/sysconfig/network-scripts/ifcfg-eth0

// 重启网络服务

# service network restart

// 修改主机名

# hostnamectl set-hostname 主机名

// 查看主机名

# hostnamectl status

33 设置IP地址与主机名映射

// 切换root用户

$ su root

// 编辑hosts文件

# vim /etc/hosts

172162081    hadoop-master1

172162082    hadoop-master2

172162083    hadoop-slave1

172162084    hadoop-slave2

172162085    hadoop-slave3

34 关闭防火墙和Selinux

// 切换root用户

$ su root

// 停止firewall防火墙

# systemctl stop firewalldservice

// 禁止firewall开机启动

# systemctl disable firewalldservice

// 开机关闭Selinux

# vim /etc/selinux/config

SELINUX=disabled

// 重启机器后root用户查看Selinux状态

# getenforce

35 配置SSH免密码登录

// 在hadoop-master1节点生成SSH密钥对

$ ssh-keygen -t rsa

// 将公钥复制到集群所有节点机器上

$ ssh-copy-id hadoop-master1

$ ssh-copy-id hadoop-master2

$ ssh-copy-id hadoop-slave1

$ ssh-copy-id hadoop-slave2

$ ssh-copy-id hadoop-slave3

// 通过ssh登录各节点测试是否免密码登录成功

$ ssh hadoop-master2

备注:在其余节点上执行同样的操作,确保集群中任意节点都可以ssh免密码登录到其它各节点。

36 安装JDK

// 卸载系统自带的openjdk

$ suroot

# rpm-qa | grep java

# rpm-e --nodeps java-170-openjdk-17075-2542el7_0x86_64

# rpm-e --nodeps java-170-openjdk-headless-17075-2542el7_0x86_64

# rpm-e --nodeps tzdata-java-2015a-1el7_0noarch

# exit

// 解压jdk安装包

$ tar-xvf jdk-7u79-linux-x64targz

// 删除安装包

$ rmjdk-7u79-linux-x64targz

// 修改用户环境变量

$ cd ~

$ vimbash_profile

exportJAVA_HOME=/home/hadoop/app/jdk170_79

exportPATH=$PATH:$JAVA_HOME/bin

// 使修改的环境变量生效

$ sourcebash_profile

// 测试jdk是否安装成功

$ java-version

4 集群时间同步

如果集群节点时间不同步,可能会出现节点宕机或引发其它异常问题,所以在生产环境中一般通过配置NTP服务器实现集群时间同步。本集群在hadoop-master1节点设置ntp服务器,具体方法如下:

// 切换root用户

$ su root

// 查看是否安装ntp

# rpm -qa | grep ntp

// 安装ntp

# yum install -y ntp

// 配置时间服务器

# vim /etc/ntpconf

# 禁止所有机器连接ntp服务器

restrict default ignore

# 允许局域网内的所有机器连接ntp服务器

restrict 17216200 mask 2552552550 nomodify notrap

# 使用本机作为时间服务器

server 12712710

// 启动ntp服务器

# service ntpd start

// 设置ntp服务器开机自动启动

# chkconfig ntpd on

集群其它节点通过执行crontab定时任务,每天在指定时间向ntp服务器进行时间同步,方法如下:

// 切换root用户

$ su root

// 执行定时任务,每天00:00向服务器同步时间,并写入日志

# crontab -e

0       0                           /usr/sbin/ntpdate hadoop-master1>> /home/hadoop/ntpdlog

// 查看任务

# crontab -l

5 Zookeeper集群安装

Zookeeper是一个开源分布式协调服务,其独特的Leader-Follower集群结构,很好的解决了分布式单点问题。目前主要用于诸如:统一命名服务、配置管理、锁服务、集群管理等场景。大数据应用中主要使用Zookeeper的集群管理功能。

本集群使用zookeeper-345-cdh571版本。首先在hadoop-slave1节点安装Zookeeper,方法如下:

// 新建目录

$ mkdir app/cdh

// 解压zookeeper安装包

$ tar -xvf zookeeper-345-cdh571targz -C app/cdh/

// 删除安装包

$ rm -rf zookeeper-345-cdh571targz

// 配置用户环境变量

$ vim bash_profile

export ZOOKEEPER_HOME=/home/hadoop/app/cdh/zookeeper-345-cdh571

export PATH=$PATH:$ZOOKEEPER_HOME/bin

// 使修改的环境变量生效

$ sourcebash_profile

// 修改zookeeper的配置文件

$ cd app/cdh/zookeeper-345-cdh571/conf/

$ cp zoo_samplecfg zoocfg

$ vim zoocfg

# 客户端心跳时间(毫秒)

tickTime=2000

# 允许心跳间隔的最大时间

initLimit=10

# 同步时限

syncLimit=5

# 数据存储目录

dataDir=/home/hadoop/app/cdh/zookeeper-345-cdh571/data

# 数据日志存储目录

dataLogDir=/home/hadoop/app/cdh/zookeeper-345-cdh571/data/log

# 端口号

clientPort=2181

# 集群节点和服务端口配置

server1=hadoop-slave1:2888:3888

server2=hadoop-slave2:2888:3888

server3=hadoop-slave3:2888:3888

# 以下为优化配置

# 服务器最大连接数,默认为10,改为0表示无限制

maxClientCnxns=0

# 快照数

autopurgesnapRetainCount=3

# 快照清理时间,默认为0

autopurgepurgeInterval=1

// 创建zookeeper的数据存储目录和日志存储目录

$ cd

$ mkdir -p data/log

// 在data目录中创建一个文件myid,输入内容为1

$ echo "1" >> data/myid

// 修改zookeeper的日志输出路径(注意CDH版与原生版配置文件不同)

$ vim libexec/zkEnvsh

if [ "x${ZOO_LOG_DIR}" = "x" ]

then

ZOO_LOG_DIR="$ZOOKEEPER_HOME/logs"

fi

if [ "x${ZOO_LOG4J_PROP}" = "x" ]

then

ZOO_LOG4J_PROP="INFO,ROLLINGFILE"

fi

// 修改zookeeper的日志配置文件

$ vim conf/log4jproperties

zookeeperrootlogger=INFO,ROLLINGFILE

// 创建日志目录

$ mkdir logs

将hadoop-slave1节点上的Zookeeper目录同步到hadoop-slave2和hadoop-slave3节点,并修改Zookeeper的数据文件。此外,不要忘记设置用户环境变量。

// 在hadoop-slave1中将zookeeper目录复制到其它节点

$ cd ~

$ scp -r app/cdh/zookeeper-345-cdh571hadoop-slave2:/home/hadoop/app/cdh

$ scp -r app/cdh/zookeeper-345-cdh571 hadoop-slave3:/home/hadoop/app/cdh

//在hadoop-slave2中修改data目录中的myid文件

$ echo "2" >app/cdh/zookeeper-345-cdh571/data/myid

//在hadoop-slave3中修改data目录中的myid文件

$ echo "3" >app/cdh/zookeeper-345-cdh571/data/myid

最后,在安装了Zookeeper的各节点上启动Zookeeper,并查看节点状态,方法如下:

// 启动

$ zkServersh start

// 查看状态

$ zkServersh status

// 关闭

先决条件

确保在你集群中的每个节点上都安装了所有必需软件。

获取Hadoop软件包。

安装

安装Hadoop集群通常要将安装软件解压到集群内的所有机器上。

通常,集群里的一台机器被指定为 NameNode,另一台不同的机器被指定为JobTracker。这些机器是masters。余下的机器即作为DataNode也作为TaskTracker。这些机器是slaves。

我们用HADOOP_HOME指代安装的根路径。通常,集群里的所有机器的HADOOP_HOME路径相同。

配置

接下来的几节描述了如何配置Hadoop集群。

配置文件

对Hadoop的配置通过conf/目录下的两个重要配置文件完成:

hadoop-defaultxml - 只读的默认配置。

hadoop-sitexml - 集群特有的配置。

要了解更多关于这些配置文件如何影响Hadoop框架的细节,请看这里。

此外,通过设置conf/hadoop-envsh中的变量为集群特有的值,你可以对bin/目录下的Hadoop脚本进行控制。

集群配置

要配置Hadoop集群,你需要设置Hadoop守护进程的运行环境和Hadoop守护进程的运行参数。

Hadoop守护进程指NameNode/DataNode 和JobTracker/TaskTracker。

配置Hadoop守护进程的运行环境

管理员可在conf/hadoop-envsh脚本内对Hadoop守护进程的运行环境做特别指定。

至少,你得设定JAVA_HOME使之在每一远端节点上都被正确设置。

管理员可以通过配置选项HADOOP__OPTS来分别配置各个守护进程。 下表是可以配置的选项。

1)将虚拟机A1和B1的网络连接设置成桥接(估计你目前是NAT模式),2)在A1下配置网络,配置可参考A(Win7),除IP不同,其它如子网掩码,

默认网关或者DNS服务器都相同,

在B1下配置网络,配置可参考B(Win7),除IP不同,其它如子网掩码,

默认网关或者DNS服务器都相同,

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » 配置hadoop集群中启动journalnode的作用是什么?

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情