我公司给客服运输大型服务器弄坏了,保险公司赔70,我该怎么处理
首先,你先找到客户,协商解决,服务器最主要的是数据,看看硬盘有没有损坏。数据能保住,那么就能挽回80%的损失。
其次,硬件的损坏程度,如果是硬件内在损坏,可以让客户提供购买发票,联系硬件厂商上门维修,一般服务器硬件都是有技术上门服务的。
最后,如果是外在损坏,可以根据保险公司理赔的70%购买硬件外壳,其他都还是可以组装上去的。
关键看协商了。记住硬件不是主要的,数据才是主要的,你能用这个打动客户就能将损失最小化。
我们是中电华联做服务器租用托管的,所以对服务器很了解。
扩展阅读:保险怎么买,哪个好,手把手教你避开保险的这些"坑"
运输层(传输层),解决的是计算机程序到计算机程序之间的通信问题,即所谓的“端”到
“端”的通信。引入传输层的原因: 增加复用和分用的功能、 消除网络层的不可靠性、 提供从源端主机到目的端主机的可靠的、与实际使用的网络无关的信息传输。运输层是ISO/OSI的第四层,处于通信子网和资源子网之间,是整个协议层次中最核心的一层。它的作用是在优化网络服务的基础上,为源主机和目标主机之间提供可靠的价格合理的透明数据传输,使高层服务用户在相互通信时不必关心通信子网实现的细节。运输层的最终目标是为传送服务用户提供有效、可靠和价格合理的运输服务,而传送服务的用户即会话层实体。运输层是OSI七层模型中最重要最关键的一层,是唯一负责总体数据传输和控制的一层。运输层要达到两个主要目的:第一提供可靠的端到端的通信;第二,向会话层提供独立于网络的运输服务。 首先,运输层之上的会话层、表示层及应用层均不包含任何数据传输的功能,而网络层又不一定需要保证发送站的数据可靠地送至目的站;其次会话层不必考虑实际网络的结构、属性、连接方式等实现的细节。根据运输层在七层模型中的目的和地位,它的主要功能是对一个进行的对话或连接提供可靠的传输服务;在通向网络的单一物理连接上实现该连接的利用复用;在单一连接上进行端到端的序号及流量控制;进行端到端的差错控制及恢复;提供运输层的其它服务等。运输层反映并扩展了网络层子系统的服务功能,并通过运输层地址提供给高层用户传输数据的通信端口,使系统间高层资源的共享不必考虑数据通信方面的问题。
基本功能
提供端到端(进程-进程)的可靠通信,即向高层用户屏蔽通信子网的细节,提供
通用的传输接口。
1 把传输地址映射为网络地址;2 把端到端的传输连接复用到网络连接上;3 传输连接管理;4 端到端的顺序控制、差错检测及恢复、分段处理及QoS监测;5 加速数据传送;6将传输层的传输地址映射到网络层的网络地址;7 将多路的端点到端点的传输连接变成一路网络连接;8 传输连接的建立、释放和监控;9 完成传输服务数据单元的传送;10 端点到端点传输时的差错检验及对服务质量的监督。
TCP/IP的运输层中的两个协议
用户数据报协议UDP(User Datagram Protocol):提供无连接服务;传输控制协议TCP(Transmission Control Protocol):提供面向连接服务。UDP和TCP都使用IP协议。
1UDP提供了不可靠的无连接传输服务。它使用IP携带报文,但增加了对给定主机上多个目标进行区别的能力。 UDP没有确认机制;不对报文排序;没有超时机制;没有反馈机制控制流量;使用UDP的应用程序要承担可靠性方面的全部工作。
2 传输控制协议TCP(Tranmission Control Protocol)面向连接的、可靠的、端到端的、基于字节流的传输协议;TCP不支持多播(multicast)和广播(broadcast);TCP连接是基于字节流的,而非消息流,消息的边界在端到端的传输中不能得到保留;对于应用程序发来的数据,TCP可以立即发送,也可以缓存
一段时间以便一次发送更多的数据。为了强迫数据发送,可以使用PUSH标记;对于紧急数据(urgent data),可以使用URGENT标记。
端口的概念
端口:用16位来表示,即一个主机共有65536个端口。序号小于256的端口称为通用端口,如FTP是21端口,WWW是80端口等。端口用来标识一个服务或应用。一台主机可以同时提供多个服务和建立多个连接。端口(port)就是传输层的应用程序接口。应用层的各个进程是通过相应的端口才能与运输实体进行交互。服务器一般都是通过人们所熟知的端口号来识别的。例如,对于每个TCP/IP实现来说,FTP服务器的TCP端口号都是21,每个Telnet服务器的TCP端口号都是23,每个TFTP(简单文件传输协议)服务器的UDP端口号都是69。任何TCP/IP实现所提供的服务都用众所周知的1-1023之间的端口号。这些人们所熟知的端口号由Internet端口号分配机构(Internet Assigned Numbers Authority, IANA)来管理。
用户数据报UDP的格式
用户数据报UDP包括两个字段:数据字段和首部字段。首部字段有8个字节,4个字段组成,每个字段两个字节。源端口字段: 源端口号;目的端口字段:目的端口号;长度字段:UDP数据报的长度;检验和字段:防止UDP数据报在传输中出错。伪首部:仅为计算检验和而构造。UDP通常作为IP的一个简单扩展。它引入了一个进程端口的匹配机制,使得某用户进程发送的每个UDP报文都包含有报文目的端口的编号和报文源端口的编号,从而使UDP软件可以把报文传递给正确的接收进程。
UDP提供的服务:UDP提供的服务与IP协议一样,是不可靠的、无连接的服务。但它又不同于IP协议,因为IP协议是网络层协议向运输层提供无连接的服务,而UDP是传输层协议,它向应用层提供无连接的服务。UDP有以下优点:发送数据之前不需要建立连接,发送后也无需释放,因此,减少了开销和发送数据的时延。UDP不使用拥塞控制,也不保证可靠交付,因此,主机不需要维护有许多参数的连接状态表。UDP用户数据报只有8个字节的首部,比TCP的20个字节的首部要短。由于UDP没有拥塞控制,当网络出现拥塞不会使源主机的发送速率降低。因此UDP适用实时应用中要求源主机的有恒定发送速率的情况。
TCP提供的服务
1端到端的面向连接的服务;2 完全可靠性;全双工通信;3流接口;4应用程序将数据流发送给TCP;5在TCP流中,每个数据字节都被编号(序号);6TCP层将数据流分成数据段并以序号来标识;7可靠的连接建立和完美的连接终止。TCP 协议是面向字节的。TCP 将所要传送的报文看成是字节组成的数据流,并使每一个字节对应于一个序号。 TCP的编号与确认:TCP不是按传送的报文段来编号。TCP将所要传送的整个报文看成是一个个字节组成的数据流,然后对每一个字节编一个序号。在连接建立时,双方要商定初始序号。TCP就将每一次所传送的报文段中的第一个数据字节的序号,放在TCP首部的序号字段中。TCP的确认是对接收到的数据的最高序号(即收到的数据流中的最后一个序号)表示确认。但返回的确认序号是已收到的数据的最高序号加1。也就是说,确认序号表示期望下次收到的第一个数据字节的序号。由于TCP能提供全双工通信,因此通信中的每一方都不必专门发送确认报文段,而可以在传送数据时顺便把确认信息捎带传送。这样可以提高传输效率。
TCP报文段的格式
从TCP报文段格式图可以看出,一个TCP报文段分为首部和数据两部分。
首部固定部分各字段的意义如下:
源端口/目的端口:TSAP地址。用于将若干高层协议向下复用
发送序号:是本报文段所发送的数据部分第一个字节的序号
确认序号:期望收到的数据(下一个消息)的第一字节的序号
首部长度:单位为32位(双字) ;
控制字段
紧急比特(URG):URG=1时表示加急数据,此时紧急指针的值为加急数据的最后一个字节的序号 ;
确认比特(ACK):ACK=1时表示确认序号字段有意义 ;
急迫比特(PSH):PSH=1时表示请求接收端的传输实体尽快交付应用层 ;
复位比特(RST):RST=1表示出现严重差错,必须释放连接,重建 ;
同步比特(SYN):SYN=1,ACK=0 表示连接请求消息。SYN=1,ACK=1 表示同意建立连接消息;
终止比特(FIN):FIN=1时表示数据已发送完,要求释放连接;窗口大小:通知发送方接收窗口的大小,即最多可以发送的字节数 ;
检查和:12B的伪首部 首部 数据;
选项:长度可变。TCP只规定了一种选项,即最大报文段长度 ;
TCP的流量控制
TCP使用滑动窗口机制来进行流量控制。当一个连接建立时,连接的每一端分配一个缓冲区来保存输入的数据。当数据到达时,接收方发送确认ACK,并包含一个窗口通告(剩余的缓冲区空间的数量叫窗口)。如果发送方收到一个零窗口通告,将停止发送,直到收到一个正的窗口通告。当接收方窗口为0后应用层取出小部分数据将产生一个比较小的窗口通告,使得对方发送一些小的数据段,效益很低。可以通过延迟发送窗口通告或发送方延迟发送数据来解决。使用了窗口机制以后,提高了网络的吞吐量。
TCP如何发现拥塞
1收到ICMP的源抑制报文;2超时包丢失;3TCP把发现包丢失解释为网络拥塞。
拥塞避免:指当拥塞窗口增大到门限窗口时,就将拥塞窗口指数增长速率降低为线性增长速率,避免网络再次出现拥塞。迅速递减:TCP总是假设大部分包丢失来源于拥塞,一旦包丢失,则TCP降低它发送数据的速率,这种方法能够缓和拥塞。慢启动:TCP开始时只发送一个消息;如果安全到达,TCP将发送两个消息;如果对应的两个确认来了,TCP就再发四个,如此指数增长一直持续到TCP发送的数据达到接收方通告窗口的一半,这时TCP将降低增长率。TCP的重传机制:TCP重传机制是TCP中最重要和最复杂的问题之一。TCP每发送一个报文段,就设置一次记时器。只要记时器设置的重传时间到而还没有收到确认,就要重传这一报文段。TCP监视每一连接中的当前延迟,并适配重发定时器来适应条件的变化。重发定时器基于连接往返延迟:
RTTnew = (alphaRTTold) ((1 - alpha)RTTsample))
RTO = betaRTTnew
TCP的运输连接管理
1运输连接管理目的:使运输连接的建立和释放都能正常的进行;2连接建立的采用的过程叫做三次握手协议或三次联络。三次握手(three-way handshake)方案解决了由于网络层会丢失、存储和重复分组带来的问题。三次握手正常建立连接的过程:主机 A 发出序号为X的建立连接请求CR TPDU。主机 B 发出序号为Y的接受连接确认ACK TPDU,并确认A的序号为X的建立连接请求。主机 A 发出序号为X的第一个数据DATA,并确认主机 B的序号为Y的接受连接确认。
TCP的有限状态机:TCP将连接可能处于的状态及各种状态可能发生的变迁,画成如下图所示的有限状态机。图中的每一个方框就是TCP可能具有的状态。方框中写的字是TCP标准中给该状态起的名字。状态之间的箭头表示可能发生的状态变迁。箭头旁边写上的字,表示是什么原因引起这种变迁,或表明发生状态变迁后又出现什么动作。
从通信和处理信息的角度看,运输层是向它上面的应用层提供通信服务的,它属于面向通信部分的最高层,同时也是用户功能中的最低层。当网络的边缘部分中的两台主机使用网络的核心部分的功能进行端到端的通信时,只有主机的协议栈才有运输层,而网络核心部分中的路由器在转发分组时都只用到下三层的功能。
运输层的两个主要协议 TCP/IP 都是互联网的正式标准,即:
(1)用户数据报协议UDP
(2)传输控制协议TCP
TCP则是面向连接的服务。在传送数据之前必须先建立连接,数据传送结束后要释放连接。TCP不提供广播或者多播服务。由于TCP要提供可靠的面向连接的运输服务,因此需要增加很多的开销。
TCP/IP的运输层用一个16位端口号来标志一个端口。端口号只有本地意义。它是为了标志本计算机应用层中的各个进程在和运输层交互时的层间接口。
运输层的端口号分为以下两类:
(1)服务器端使用的端口号: 它主要分为系统端口号0~1023和登记端口号1024~49151。
(2)客户端使用的端口号: 49152~65535,这类端口号仅在客户端进程运行时才动态选择。当服务器收到客户端进程的报文时,就知道客户端进程的端口号。因而可以把数据发送给客户进程。
用户数据报协议相比于IP的数据报服务就是只增加了复用、分用和差错检测功能。UDP的主要特点是:
(1)UDP是无连接的, 发送数据之前不需要建立连接,因此减少开销和发送数据之前的时延。
(2)UDP使用尽最大努力交付, 即不保证可靠交付,因此主机不需要维持复杂的连接状态表。
(3)UDP是面向报文的。 发送方的UDP对应用交下来的报文,添加首部后就向下交付给IP层。不对报文做任何处理,因此当报文过长时,IP层可能需要进行分片处理。
(4)UDP没有拥塞控制, 网络出现的拥塞不会使源主机的发送速率减低。
(5)UDP支持一对一、一对多、多对一和多对多的交互通信。
(6)UDP的首部开销小, 只有8个字节。
UDP有两个字段:数据字段和首部字段。先介绍首部字段,它是由4个字段组成的,每个字段只有2个字节,总共有8个字节。各个字段的意义如下:
(1)源端口: 源端口号。在需要对方回信时选用。不需要时可用全0。
(2)目的端口: 目的端口号。在这终点交付报文时必须使用。
(3)长度: UDP用户数据报的长度,其最小值是8(只有首部)。
(4)检验和: 检测UDP用户数据报在传输中是否有错,有错则丢弃。
当在传送用户数据报时,如果接收方UDP发现收到的报文中目的端口号不正确(即不存在对应于该端口号的应用进程),就丢弃该报文,并由网际控制报文协议ICMP发送“端口不可达”差错报文给发送方。
TCP的主要特点如下:
(1)TCP是面向连接的运输层协议。 应用程序在使用TCP协议之前,必须先建立TCP连接。传送数据完毕后,必须释放TCP连接。
(2)每一条TCP连接只能有两个端点。 每一条TCP连接只能是点对点的。
(3)TCP提供可靠交付的服务。 通过TCP连接传送的数据,无差错、不丢失、不重复,并且按序到达。
(4)TCP提供全双工通信。 TCP允许通信双方的应用进程在任何时候都能发送数据。
(5)面向字节流。 TCP中的流指的是流入到进程或进程流出的字节序列。虽然应用程序和TCP的交互是一次一个数据块,但TCP把应用程序交下来的数据看成一连串的无结构的字节流。TCP不保证发送方发送的数据块和接收方接收的数据块一致,但保证程序接收到的字节流和程序发送的字节流一致。
TCP连接的端点叫做套接字或者插口。套接字是指将端口号拼接到IP地址之后,即:
每一条TCP连接唯一的被通信两端的两个端点所确定。即:
如图所示,A发送分组M1,发送完毕就暂停发送,等待B的确认,B收到了M1就向A发死你确认。A在收到了对M1的确认之后,就再发送下一个分组M2,以此类推。
如图所示,当B接收M1时检测出了差错,就丢弃M1,其他什么也不做。而A只要超过了一段时间没有收到确认,就会认为刚才发送的分组丢失了,因而重传前面发送过的分组,这就叫做超时重传,而实现超时重传则需要A为每一个已发送的分组都设置一个超时计时器。
需要注意以下三点:
(1)A在发送完一个分组后,必须暂时保留已发送的分组的副本。
(2)分组和确认分组必须编号,这样才能明确哪一个发出的分组收到了确认。
(3)超时计时器设置的重传时间应当比数据在分组传输的平均往返时间更长。
如图所示,B所发送的对M1确认丢失了,A在设定的超时重传时间内没有收到确认,所以无法知道自己发送的分组是怎样出错的,所以会重传M1,而当B又收到了重传的分组M1,这时应该采取两个行动:
(1)丢弃这个重复分组M1。
(2)向A发送确认。
还有一种情况就是在传输过程中没有出现差错,但B对分组M1的确认迟到了,而A会收到重复的确认,A收下后就会丢弃,B仍然会收到重复的M1,并且同样要丢弃重复的M1,并且重传确认分组。
停止等待协议的优点是简单,缺点则是信道的利用率太低。我们用TD表示A发送分组需要的时间,TA表示B发送确认分组需要的时间,RTT为往返时间,则:
为了提高传输的效率,发送方可以不使用低效率的停止等待协议,而是采用流水线传输的方式。即不必每发完一个分组就停下来等待对方的确认,这样就可以使信道上一直有数据在不间断的传送。
如图表示的是发送方维持的发送窗口,它指的是位于发送窗口内的5个分组都可以连续发送出去而不需要等待对方的确认。同时连续ARP协议规定,发送方每收到一个确认,就把发送窗口向前滑动一个分组的位置。
对于接收方采用的则是累计确认的方式,即接收方不必对收到的分组逐个发送确认。而是在收到几个分组后,对按序到达的最后一个分组发送确认,这就表示:到这个分组为止的所有分组都已正确收到了。这种方式的优点是:容易实现,即使确认丢失也不必重传(意思是发送方不必重传)。但缺点是不能向发送方反映出接收方已经正确收到的所有分组信息。
TCP虽然是面向字节流的,但传送TCP的数据单元却是报文段。一个TCP报文段可以分为首部和数据两部分。
为了后面讲述的方便,我们假设数据传输只在一个方向进行,即A发送数据,B给出确认。
TCP的滑动窗口是以字节为单位的。如图所示,现在假定A收到了B发来的确认报文段,其中的窗口是20字节,而确认号是31,根据这2个数据,A就构造出自己的发送窗口。
发送窗口表示:在没有收到B的确认的情况下,A可以连续把窗口内的数据都发送出去。凡是已经发送过的数据,在未收到确认之前都必须暂时保留,以便在超时重传时使用。发送窗口后面的部分表示已发送且已经收到了确认。而发送窗口前沿的部分表示不允许发送的。
现在假定A发送了序号为31~41的数据。这时发送窗口位置并未改变但是发送窗口内靠后面有11个字节表示已发送但是未收到确认。而发送窗口内靠前面的9个字节时允许发送但未发送的。如图所示:
而对于B,它的接收窗口大小是20,在接收窗口外面到30号位置的数据是接收并确认的,因此可以丢弃。在下图中,B收到了32和33的数据,但它们不是按序到达的,因为并没有收到31号数据。B只能对按序达收到的数据中的最高序号给出确认,因此B发送的确认报文字段的确认号依然是31号。
现在假定B收到了序号为31的数据,并把31~33的数据交付主机,然后B删除这些数据。接着把窗口向前移动3个序号,同时给a发送确认,其中的窗口值仍为20,但确认号变为34。表明B已经收到序号33为止的数据。
因为TCP的发送方在规定的时间内没有收到确认就要重传已经发送的报文段,但是重传时间的选择却TCP最复杂的问题之一。为此TCP采用了一种自适应算法,它记录了一个报文段发出的时间以及收到相应的确认的时间。这两个时间之差就是报文段的往返时间RTT,同时TCP保留了RTT的加权平均往返时间RTTs。而RTTD是RTT的偏差加权平均值,它与RTTs和新的RTT样本之差有关。
超时重传时间的算法如下:
第一次测量时,加权平均往返时间取往返时间RTT,以后每次测量到一个新的RTT,按以下公式计算:
第一次测量时,RTT偏差的加权平均等于RTT的一半,以后的测里中,按以下公式计算:
综上超时重传时间RTO计算如下:
若收到的报文无差错,只是未按序号,使用选择确认SACK可是让发送方发送那些未收到的数据,而不重复发送已经收到的那些数据。如果要使用选择确认SACK,那么在建立TCP连接时,就要在TCP首部的选项中加上“允许SACK”的选项,并且双方必须都事先商量好。
流量控制就是指让发送方的发送速率不要太快,要让接收方来得及接收。而利用滑动窗口机制就可以很方便的在TCP连接上实现对发送方的流量控制。
如上图所示,接收方B进行了三次流量控制。第一次把窗口减小到rwnd=300,第二次又减到rwnd=100,最后是rwnd=0,即不允许发送方再发送数据了。
但是我们应该考虑一种情况,就是当接收方B的存储已满时,会向发送方发送零窗口的报文段,接着B的存储又有了一些空间,B再向A发送一个不为零的窗口值,但这个报文丢失了,结果就是双方一直等待下去。所以为了解决这个问题,TCP为每一个连接设有一个持续计时器。只要TCP连接的一方收到对方的零窗口通知,就启动持续计时器,当计时器到期后,就发送一个探测段文段,而对方就在确认这个探测段时给出了现在的窗口值。如果窗口仍然是0,那么收到这个报文段的一方就重新设置持续计时器,反之则死锁的僵局就可以打破了。
应用程序把数据传送到TCP的发送缓存后,TCP在何时发送这些数据?,在TCP的实现中广泛使用了Nagle算法。具体算法如下:
(1)若发送应用进程要把数据逐个字节地送到TCP的发送缓存,则发送方就把第一个数据字节先发出去,把后面到达的数据字节都缓存起来。
(2)方发送方收到对第一个数据字节的确认后,再把发送缓存中的所有数据组装成一个报文发送出去,同时继续对后续到来的数据进行缓存。
(3)只有收到对前一个报文段的确认后才继续发送下一个报文段。
当数据到达快而网络速度慢时,这种方法可以明显减少网络带宽。Nagle还规定:当到达的数据达到窗口的一半或最大报文长度时就立即发送一个报文。
但还还需要考虑一个叫做糊涂综合征的问题,具体内容是若接收方的缓存已满,应用进程每次只从缓存中取1个字节,然后向发送方确认,并把窗口设为1个字节(缓存只空了1个字节的空间),接着发送方发来1个字节,接收方发回确认,仍然将窗口设为1,这样进行下去,网络的利用率很低。
为了解决这个问题,可以让接收方等待一段时间,使得或者缓存已有足够的空间或者等到接收缓存已有一半的空闲空间。此时,接收方就发出确认报文,并向发送方通知当前窗口的大小。
拥塞 是指在某一段时间内,若对网络中某一资源的需求超过了该资源所能提供的可用部分,网络的性能就会变坏的情况。而所谓的 拥塞控制 就是防止过多的数据注入到网络当中,这样可以使网络中的路由器或者链路不致过载,它是一个全局性的过程,涉及到所有的主机和路由器,而流量控制往往是指点对点通信量的控制。拥塞控制所要做的都有一个前提,就是网络能够承受现有的网络负荷。
TCP进行拥塞控制的算法有4种:慢开始、拥塞避免、快重传和快恢复。下面在讨论这些算法时我们假定:
(1)数据是单方向传送的,对方只传送确认报文。
(2)接收方总是有足够大的缓存空间。
发送方维持一个拥塞窗口的状态变量,其大小取决于拥塞程度,并且动态变化。发送方让自己的发送窗口小于拥塞窗口(如果考虑接收方的接收能力的话,发送窗口可能小于拥塞窗口)。发送方控制拥塞窗口的原则是:只要网络没有拥塞,拥塞窗口就再增大一点,以便把更多的分组发送出去,只要出现拥塞,就减小拥塞窗口,以减少注入到网络的分组数。
下面会从“慢开始算法”讲起来讨论拥塞窗口的大小如何变化的。
慢开始的算法思路是:当主机开始发送数据时,由于并不清楚网络的负荷情况,所以如果立即把大量数据字节注入到网络中,就有可能引起网络拥塞。因此会采用由小逐渐增大发送窗口。即在通常开始发送报文时,先将拥塞窗口cwnd的值设为一个最大报文段MSS的数值,而在每收到一个新的报文段确认后,把拥塞窗口增加至多一个MSS的数值。
如上图所示,开始时cwnd=1,发送方发送一个M1,接收方收到M1发送确认,发送方收到一个确认后将cwnd加1,此时cwnd=2,因此发送方发送M2和M3两个报文段,接收方收到后返回两个确认,因此cwnd增加两次,此时cwnd=4,接着发送方发送M4~M7四个报文段。依次类推。因此使用慢开始算法后,每经过一个传输轮次,拥塞窗口就加倍。
但是为了防止拥塞窗口cwnd增加过大导致网络拥塞,需要设置一个慢开始门限ssthresh,慢开始门限用法如下:
当cwnd<ssthresh时,使用上述的慢开始算法。
当cwnd>ssthresh时,停止使用慢开始算法,使用拥塞避免算法。
当cwnd=ssthresh时,既可以使用慢开始算法,也可以使用拥塞避免算法。
这里的拥塞避免算法是指让拥塞窗口缓慢的增大,即每经过一个往返时间RTT就把发送方的拥塞窗口cwnd加1,而不是像慢开始阶段那样加倍增长。
需要注意的是无论在慢开始阶段还是拥塞避免阶段,只要发送方判断网络出现拥塞(根据是没有按时收到确认),立即把慢开始门限ssthresh设为出现拥塞时的发送窗口的一半。然后发送窗口cwnd重新设为1,执行慢开始算法。目的是迅速减少主机发送到网络分组的分组数。
快重传算法要求接收方每收到一个失序的报文段后就立即发送重复确认,如下图接收了M1和M2后,又接收到一个M4,M4属于失序报文,则发送对M2的重复确认。发送方只要连续收到三次确认重复就立即重传对方未收到的报文段M3。
与快重传算法配合的还有快恢复算法,过程如下:
(1)当发送方连续收到三个重复确认时,就把慢开始门限ssthresh减半,这是为了防止网络拥塞,接着并不执行慢开始算法。
(2)由于上图这种情况很可能不是因为网络拥塞引起的,因此这里不执行慢开始算法(即不把拥塞窗口cwnd设为1,这样速度太慢),而是把cwnd值设置为慢开始门限ssthresh减半后的数值,然后开始执行拥塞避免算法。
TCP的运输连接有是三个阶段:连接建立、数据传送和连接释放。在TCP的连接过程中要解决以下三个问题:
(1)要使每一方能够确知对方的存在。
(2)要允许双方协商一些参数(如最大窗口值、是否使用窗口扩大选项和时间戳选项以及服务质量)。
(3)能够对运输实体资源进行分配。
TCP建立连接的过程叫做握手,握手需要在客户和服务器之间交换3个TCP报文段。如图是三报文握手建立的连接过程:
A最后还要发送一次确认的原因是为了防止已经失效的连接请求报文段突然又传送到了B,因而产生错误。试想一种情况:如果只有第一次和第二次握手,第二次B向A发送的确认丢失了,此时B进入了连接建立状态,A没有收到确认,过一段时间后会再次向B发送连接请求,B收到后又会再次建立连接,白白浪费B的资源。
A在TIME-WAIT状态等待2MSL(MSL,最长报文段寿命),主要是因为以下两点考虑:首先是为了保证A发送的最后一个ACK报文段能够到达B,因为这个ACK报文段可能丢失,此时B会重传连接释放报文,如果A已经关闭,则无法收到这个报文。其次,当A在发送完最后一个ACK报文段后,再经过时间2MSL,就可以使本连接持续时间内产生的所有报文段都从网络中消失。这样,下一个新连接中不会出现这种旧的连接请求报文段。
在图中每一个方框即TCP可能具有的状态。每个方框中的大写英文字符串时TCP标准所使用的的TCP连接状态名。状态之间的箭头表示可能发生的状态变迁。箭头旁边的字表明引起这种变迁的原因,或表明发生状态变迁后又出现什么动作,在图中粗实线箭头表示对客户进程的正常变迁,粗虚线箭头表示对服务器进程的正常变迁,细线箭头表示异常变迁。
0条评论