为什么Window系统的Internet时间不自动更新
左键点击右下角时间然后按照下图操作
顾名思义,网络时间同步是指将计算机或设备的时间与网络上的时间源保持一致。时间源是网络中可靠的时间设备提供,标准是时间的精准可靠。一些网站和专业的单位提供此类服务器,也有专业的时间设备(时间服务器,NTP网络时间服务器,GPS同步时钟)。
NTP网络时间同步服务器
NTP网络时间服务器是机架式NTP网络时间服务器,该设备能支持MD5安全协议,内置高性能工业级服务器主板,嵌入式linux操作系统,是真正的NTP网络时间服务器。
NTP网络时间服务器是为网络设备提供精确、标准、安全、可靠和多功能的
时间服务的最佳解决方案,能提供精确的同步时钟信号,支持标准的NTP和SNTP网络对时协议,采用安全的MD5协议和证书加密方式,具有完整的日志记录
功能和USB端口下载功能,可支持NTP网络对时、串口授时、10MHz频率信号、1PPS脉冲信号输出,干接点报警信号等功能。
NTP网络时间服务器系统整体功耗小,采用无风扇设计,运行可靠稳定,可以为计算机网络、计算机应用系统、流程控制管理系统、电子商务系统、网上B2B系统以及数据库的保存及维护等系统需要提供精密的标准时间信号和时间戳服务,已经被成功应用于政府金融、移动通信、公安、石油、电力、交通、工业以及国防等领域
CDMA网络时间服务器
CDMA网络时间服务器是针对自动化系统中的计算机、控制装置等进行校时
的高科技产品,CDMA网络时间服务器它从CDMA基站上获取标准的时间信号,将这些信息通过各种接口类型来传输给自动化系统中需要时间信息的设备(计算
机、保护装置、故障录波器、事件顺序记录装置、安全自动装置、远动RTU),这样就可以达到整个系统的时间同步。
北斗卫星时钟服务器组合选用高精度GPS 接收机/北斗二代接收机/外部B码基准/NTP输入,提供高可靠性、高冗余度的时间基准信号,并采用先进的时间频率测控技术驯服晶振,使守时电路输出的时间同步信号精密同步在GPS/北斗/外部B码/NTP输入时间基准上,输出短期和长期稳定度都十分优良的高精度同步信号。
北斗卫星时钟服务器采用精准的测频与智能驯服算法,使振荡器时间频率信号与GPS卫星/北斗卫星/外部B码时间基准保持精密同步。由于装置输出的1PPS等时间信号是内置振荡器的分频秒信号输出,同步于GPS/北斗信号但并不受GPS/北斗秒脉冲信号跳变带来的影响,相当于UTC时间基准的复现。采用了“智能学习算法”的GPS北斗时钟,在驯服晶振过程中能够不断“学习”晶振的运行特性,并将这些参数存入板载存储器中。当外部时间基准出现异常或不可用时,装置能够自动切换到内部守时状态,并依据板载存储器中的参数对晶体振荡器特性进行补偿,使守时电路继续提供高可靠性的时间信息输出,同时避免了因晶体振荡器老化造成的频偏对守时指标的影响。
通讯管理机也称作DPU
其具有多个下行通讯接口及一个或者多个上行网络接口,相当于前置机即监控计算机,用于将一个变电所内所有的智能监控/保护装置的通讯数据整理汇总后,实时上送上级主站系统(监控中心后台机和DCS),完成遥信、遥测功能。另一方面接收后台机或DCS下达的命令,并转发给变电所内的智能系列单元,完成对厂站内各开关设备的分、合闸远方控制或装置的参数整定,实现遥控和遥调功能。同时还应该配备多个串行接口即便于厂站内的其它智能设备进行通讯。
通讯管理机一般运用于变电所,调度站,通讯管理机通过控制平台控制下行的RRtu设备,实现遥信,遥测,遥控等信息的采集,将消息反馈回调度中心,然后,控制中心管理员通过消息的处理分析,选择将执行的命令,达到远动输出调度命令的目标。
串口服务器提供串口转网络功能,能够将RS-232/485/422串口转换成TCP/IP网络接口,实现RS-232/485/422串口与TCP/IP网络接口的数据双向透明传输。使得串口设备能够立即具备TCP/IP网络接口功能,连接网络进行数据通信,极大的扩展串口设备的通信距离。
简单来说,串口服务器就相当于一个转换器,而通讯管理机相当于是一个带有处理功能的计算机。
通讯管理机也称作DPU,其具有多个下行通讯接口及一个或者多个上行网络接口,相当于前置机即监控计算机,用于将一个变电所内所有的智能监控/保护装置的通讯数据整理汇总后,实时上送上级主站系统(监控中心后台机和DCS),完成遥信、遥测功能。
通讯管理机是变配电自动化系统的重要组成部分,完成变电站微机保护、自动装置、测控等智能电子装置与变电站主计算机系统、电网自动化系统之间的信息交互。实现各远方电站信息向上位主机的交换及网络转换,从而构成全分散式的RTU通讯系统。
扩展资料:
通讯管理机的应用:
通讯管理机广泛应用于钢铁冶金行业能源计量、工程机械车联网、水文水利数据无人值守自动站、电力LCU现地单元串口联网服务器等,其采用ARM9-based RISC高效能处理器,使用了精简内核LINUX嵌入式操作系统,真正实现了工业现场的“3C”(现场控制,现场计算,现场通讯)的要求。
它既可以单独使用直接通过自带以太网口向上传输数据,也可以通过无线DTU通信设备接口即时发送数据,还可以和MicroSCADA可编程微控站组合使用形成现地控制单元分层分布应用。
-通讯管理机
大渡河沙湾水电站AVC功能设计及实现
陈胜祥1,颜现波2,郑勇1
(1四川圣达水电开发有限公司,四川 乐山 614900;2 北京中水科水电科技开发有限公司,北京 海淀
100038)
摘 要:电压质量是衡量电能质量的主要指标之一,自动电压控制(AVC)是水电站安全运行和经济运行的必要工具。根据四川电网自动电压控制(AVC)系统建设的要求,介绍了大渡河沙湾水电站AVC系统的功能特点、调节模式、控制模式、AVC系统无功分配值计算、无功分配原则及AVC系统安全约束条件,以及闭环试验的结果和分析。
关键词:沙湾水电站;自动电压控制(AVC);监控系统;分析
1 概述
随着电网规模的不断扩大,原有无功电压人工手动调整控制手段已不能满足电网安全、稳定、优质运行的要求,需要采用全网一体化的自动电压控制系统(AVC) 进行全网无功电压优化协调控制,以降低网损、提高电网电压稳定水平和电压质量。 水电厂自动电压控制(AVC)是按照预定条件和要求自动控制水电厂母线电压或全电厂无功功率的技术。水力发电厂可以通过快速调节电厂的无功功率使母线电压稳定在一个合理的范围,从而达到提高电能质量的目的。沙湾水电站AVC功能在监控系统上位机系统中集成实现。AVC软件包运行在双机配置的应用服务器中,目前电厂AGC软件包已经运行在应用服务器中。双机配置的应用服务器是主备运行方式工作,双应用服务器无扰动切换,只有主应用服务器能发出控制命令。同省调通信目前2路IEC 104规约通信和1路101规约通信。IEC 104规约通信通道电站侧是双通信服务器配置。2010年2月9日,沙湾水电站4台机组全部投运以来运行稳定,已具备AVC调试条件。
2 AVC功能总体设计背景及原则
沙湾水电站装机规模为480MW,采用扩大单元接线接线方式,配置 2台主变压器,以220kV电压等级并入四川电网,电站计算机监控系统由上位机系统(含工程师站、操作员站、历史数据服务器、调度通信工作站等硬件设备以及H9000监控软件)、现地7套机组现地控制装置(siemens S7-414H系列PLC)、 5套厂用/公用现地控制装置、1套开关站现地控制装置以及 1 套闸门现地控制装置等组成,电站AGC/AVC集成在计算机监控系统H9000上位机软件中。
电站自动调压装置采用东方电机控制设备有限公司生产GES-3320型励磁系统。每台机组配置1个调节柜、3个功率柜、1个灭磁电阻柜、1个灭磁开关柜,实现PSS、电压自动调节等功能,并接受来自监控系统的增减磁命令。目前,机组励磁系统运行正常,PSS功能正常投运。
AVC以母线电压为调节目标。沙湾水电站自动电压控制AVC功能提供两种控制模式:第一种是全厂控制模式,在全厂控制模式下,沙湾水电站AVC子站系统接收省调AVC主站系统下发的全厂控制目标和全厂无功范围约束。AVC软件按照控制策略合理分配给电厂AVC可控制的每台发电机组,调节发电机无功出力,在全厂无功约束范围下,220kV 高压母线电压达到全厂目标控制值,实现全厂多机组的电压无功自动控制。第二种为单机控制模式,AVC子站系统直接接收AVC主站系统下发的每台机组的无功出力控制目标值,通过调节发电机无功
出力,最终使各机组无功出力达到目标值。控制方式有当地控制和远方控制。
自动电压控制采用下列方式运行:
(1)母线电压曲线方式
在该方式运行时,AVC自动检测母线电压是否在相应时段的母线电压上限、下限值范围内,一旦发现超出则通过调节全厂无功功率,使电站高压母线电压维持在该时段母线电压上限、下限值范围内。
(2)给定母线电压控制方式
在该方式运行时,AVC根据运行人员给定的母线电压目标值,调节机组无功功率,使电站高压母线电压维持在给定的死区范围内。
上述两种控制方式可由运行人员通过计算机系统人机接口设备在AVC控制画面上进行切换,通过调用相应的画面,运行人员也可随时修改母线电压曲线。在每天的零点,AVC自动将明日电压曲线输入到今日电压曲线。
AVC周期监视母线电压,一旦母线电压超出允许范围(死区),即根据设置的母线电压~无功调差系数计算出所需增减的全厂无功值,然后根据新的全厂无功值在发电运行的AVC可控机组间分配,分配准则:为按机组容量比例在各AVC成组可控机组中进行无功分配,同时参照机组P-Q运行图、设置的机组无功限值及相关约束条件。
当AVC控制方式为“投入”时,AVC用机组无功功率调节命令通过网络通讯将分配结果自动发给各AVC成组可控机组现地控制装置(LCU),由LCU无功功率调节软件根据设置的无功调节参数,计算出调节脉宽对励磁装置AVR进行自适应控制,直至达到给定的无功功率目标值。若母线电压仍未恢复正常,AVC再根据当前母线电压偏差值及设置的母线电压~无功调差系数重新计算出所需增减的全厂无功值,在各AVC成组可控发电运行的机组间进行新一轮分配,直至母线电压恢复正常或全厂无功功率分配完。
当AVC控制方式为“开环”时,AVC将闭锁控制命令输出,但仍进行全厂AVC无功计算分配,其结果写入数据库无功优化分配区,运行人员可通过AVC控制画面查看分配结果,实现开环指导。
运行人员可通过人机界面整定或修改母线电压的调节死区、调压系数、机组无功上下限,以适应机组调节特性的变化。
AVC功能可由运行人员随时无扰动投入或退出。各机组也可由运行人员随时设置为无功成组或无功单机。
当AVC功能开始执行或因故退出执行时均有相应的报警信息发出,用于提示运行人员。另外,当母线电压越限而AVC无法完成调节时(如无成组可控机组或成组可控机组无功已到限值),AVC也会发出调压任务无法完成的报警信息。
3 无功分配方式
AVC是依靠机组无功功率调节来实现对母线电压的调节的,即“目标总无功功率 = 当前总无功功率+电压调差系数(目标电压-当前电压)”
对目标无功功率,应在当前可用的无功成组机组间进行分配,当前较为常用的无功分配方式有机组间按容量比例分配和等功率因数分配两种方式,当同一母线上所有机组均无功成组时(如有未成组的机组,则在计算总有功/无功时不包括此机组)。
(1)无功容量比例分配原则,
QiAVC=QAVC⨯QiMax
∑n
i=1QiMax(i=1,2, ,n)
注:n:参加AVC的机组数
错误!未找到引用源。:参加AVC的第i台机组的最大无功容量。
错误!未找到引用源。:参加AVC机组的最大无功容量之和。
QiAVC:AVC分配到第i台参加AVC机组的无功。
(2) 等功率因数原则,
QiAVC=QAVC⨯Pi
∑n
i=1iP(i=1,2, ,n)
注:n:参加AVC的机组数。
Pi:参加AVC的第i台机组的当前有功实发值。
∑n
i=1Pi:参加AVC机组的当前有功实发值之和。
错误!未找到引用源。:AVC分配到第i台参加AVC机组的无功。
不参加AVC机组,AVC分配值跟踪实发值,但此值只供显示,并不实际作用于该机组。母线电压与给定电压值在电压死区内,AVC分配值跟踪实发值。AVC将同时具有这两种分配方式,并可由操作人员自由选择使用哪种方式进行计算。
4 电厂AVC子系统结构及配置
省调AVC主站与沙湾水电站AVC子站系统拓扑结构示意见下图所示。
5 安全策略
51 机组增磁闭锁条件
在加无功升压的过程中,如机组机端电压、励磁电流、实发无功、相应厂用母线电压、定子电流(滞相运行)越高闭锁值,即停止该机组的加无功升压作业,仅允许往相反方向调节。且当所有机组都达到加励磁约束条件之一时,将增无功闭锁信号发送给省调。
52 机组减磁闭锁条件
在减无功的过程中,如机组机端电压、实发无功、相应厂用母线电压、转子电流越低闭锁值,定子电流越高闭锁值(进相运行),即停止该机组的减无功作业,仅允许往相反方向调节。且当所有机组都达到减励磁约束条件之一时,将减无功闭锁信号发送给省调。
53 单机AVC条件不满足退出
以下条件为机组运行中可能突然出现的异常、故障、事故情况,当这些情况任意之一发生时,机组退出AVC功能,以保障设备安全。
(1)机组出口断路器分闸;
(2)励磁系统现地控制模式或机组LCU现地模式;
(3)励磁故障;
(4)大于一个功率柜退出;
(5)下位机故障或通讯故障;
(6)机组增减磁同时闭锁;
(7)机端电压、有功采样故障或突变。
54 全站AVC异常退出
以下条件为机组运行中可能突然出现的异常、故障、事故情况,当这些情况任意之一发生时,全站退出AVC功能,以保障设备安全。
(1)继电保护或是安控装置动作;
(2)机组无功突变或是无功变送器故障(采样值质量位故障);
(3)机组强励动作;
(4)2台AVC应用程序服务器同时故障或退出运行;
(5)220KV母线电压突变、波动越限、采样故障;
(6)监控系统双网同时故障;
(7)未闭锁的情况下长时间调整不到目标值。
6 信息交互
61 AVC子站采集信息(遥测、遥信)
沙湾水电站AVC子站根据AVC主站控制模式的不同,接收主站下发的母线电压目标值或无功目标值,并进行闭环跟踪控制。同时具有对全厂的母线电压控制方式和对单机的无功给定控制方式,即可接受省调母线电压值和单机的无功值的遥调控制。同省调自动化系统通过2路IEC 104规约和1路IEC101通信,依照《四川电网自动电压控制(AVC)主站及子站互联接口规范》要求和沙湾水电站的实际情况制定。从子站向主站传输的信息,包含控制执行以及对子站控制过程监视与安全校核等内容,从主站下发到电厂子站的信息,以高压侧母线电压为主。
62 通信接口
621 AVC子站与AVC主站通信接口
电站AVC子站通过电厂远动装置(通信工作站)利用远动通道与AVC主站进行通信,上传AVC子站信息及接收AVC主站下发的遥控遥调命令。
远动装置(通信工作站)与主站的通讯采用网络和/或专线方式,通信规约采用SC 1801、DL/T6345104-2002等部颁规约并遵循电网的相应实施细则。
622 AVC子站与LCU的接口选择
电站AVC子站系统的控制命令通过现地控制单元LCU与励磁调节器AVR接口,利用电站计算机监控系统的机组无功调节回路实现。沙湾水电站目前能实现的接口方式开关量方式、模拟量方式和通信方式。采用开关量调节方式,机组无功闭环控制在LCU中实现。此方式实际运用中优点是励磁控制模式不受影响,原有监控系统与励磁之间的控制方式不变,缺点是机组LCU无功调节时间长,且容易超调且波动大。采用模拟量控制方式,则机组无功闭环控制在励磁系统中实现,优点是无功控制精确,调节时间短,缺点是模拟量控制可能受到干扰,且由于励磁系统工作在无功闭环控制模式,存在一定的安全性问题。通讯方式则采用MODBUS规约串口通讯方式,实际运用中有延时且不可靠暂不考虑。
综合几种情况,沙湾电站选用了开关量方式调节并设置防止因控制信号输出继电器接点粘死而导致误控的措施,调节效果良好。
7 结语
沙湾水电站于2014年06月17日与省调AVC进行联合调试试验。试验主要内容为等无功容量分配模式下的机组开环/闭环试验(包括受控机组AGC投入情况)以及相关安全策略试验。调试时,退出全站AGC功能。通过完善AVC程序,优化AVC参数,不断进行各功能、各级测试,AVC各项性能已满足各项质量要求并顺利进入试运行。从实际运用的效果看符合省调相关质量标准,采取的控制策略满足了调度和电站对于AVC的功能要求,使母线电压维持在给定值04KV之内。但是需要注意的是运用中无论AVC采用何种无功分配原则,有功变化都会使得无功重新分配。因此,如果AGC同时投入运行,就必须考虑AGC的影响,尤其是针对沙湾水电站振动区大,调节频繁的水电机组,要综合分析比较,合理采取无功分配策略和机组无功闭环实现方式、调节方式,否则无法稳定运行。其次对于像沙湾水电站这样的扩大单元接线的机组,单一投入同一单元的一台机组AVC功能,在调整无功功率的过程中另外一台机组会向相反的方向调节。因此必须在安全约束条件中注意增加避免出现“无功环流”现象的条件。AVC的功能要由励磁调节器实现,而励磁系统固有的特性和一些功能也会影响到AVC的效果,这就是调差环节、PSS反调以及低励限制。
AVC控制是水电厂稳定经济运行的基础,也是电站实现“无人值班、少人值守”的前提条件。但是实际运行中,有许多问题需要解决,且每个电站的特点不一样,AVC需要根据各电厂的运行情况探索出最适合的程序和方案,以满足电站稳定经济运行的要求。
参考文献:
[1] DL5002-2005,地区电网调度自动化设计规程[S]
[2] DL5003-2005,电力系统调度自动化设计规程[S]
[3] DL/T634-1997 ,基本远动任务配套标准[S]
作者简介:陈胜祥(1986-),男,四川乐山,二次专业工程师,从事水电厂二次设备维护、检修工作。联系电话:[1],邮箱:80370693@qqcom。
颜现波(1981-),男,河北邯郸,硕士学位,工程师,主要从事水电站计算机监控系统的研制、集成,水电站自动发电控制系统研究。
郑勇 (1980-),男,四川绵阳人,助理工程师,现任生产部副主任,从事水电厂生产技术管理工作。
0条评论