5e平台开了亚服加速器玩哪个服务器延时低
这个也不绝对。
关于区服和加速这玩意,看地区和网络吧,一个个试着过去然后比较一下哪一个比较低。不同人不同地区不同效果。
加速器是一种使带电粒子增加速度(动能)的装置。常提到的加速器是指网游加速器。网游加速器是针对个人用户快速、安全连接网游服务器的一种服务。它利用IDC资源,采用数据转发的技术为个人用户提供快速、优质网游加速服务。
好奇心与 探索 ——人类进步的阶梯。
19世纪的最后一天,世界上所有的知名物理学家齐聚一堂,准备为经典物理画上一个完美的句号,所以当时的议题是如何消除经典物理这座漂亮大厦上的两朵乌云。这两朵乌云第一朵是经典物理中已知地球的空间中是有空气的,因为声音便是通过空气这一介质传播的,那么宇宙中又存在怎样的介质能够让阳光穿越真空照耀大地的?第二朵乌云则是人们在做实验的时候发现辐射能量很可能是不连续的。
后来的故事大家也都知道,科学家们在好奇心的驱使下提出了各种看似荒诞的理论,例如波尔提出了惊世骇俗的波尔模型、薛定谔提出了薛定谔波动方程……在一个个荒诞的理论的迭代与互补下,第一朵乌云诞生了相对论,第二朵乌云诞生了量子物理,它们共同将完美的经典物理推翻,也一手构建了现在的信息时代、数字时代。
2021年也是不平凡的一年,虽其分量远不及“两朵乌云”,但在疫情这一针猛烈的催化剂下,人工智能、云原生等数字 科技 融合多种技术、多个行业、多个产品,正前所未有地渗透到医疗、自动驾驶、安全等经济 社会 的方方面面,那么近未来有望落地的 科技 趋势是怎样的?
近期,在腾讯 科技 向善创新周发布《2022年十大数字 科技 前沿应用趋势》(后简称“报告”),通过访谈重点领域的科学 探索 奖获奖人、业界权威专家,凝练出了IT重塑、智能世界、虚实共生、网络革命四大领域,数字孪生、量子计算等十大数字 科技 前沿应用趋势。
在解析报告之前需明白一点,数字 科技 化身未来新动能的应用大爆发不是单一技术的突破,而是多种技术循序渐进式的增量与融合的结果。正如腾讯研究院院长司晓在“ 科技 向善之夜”中《离线-在线-在场》的主题演讲所言:“元宇宙等概念本身是一种技术渐进式发展的趋势,就像我们在30年前说信息高速公路,10 年前说移动互联网一样,概念本身叫什么并不重要,它只是一个巨大的技术应用和孵化的池子,任何一项技术单点的突破或炒作,都不会把我们瞬间带入到新时代。”
举个例子,在演讲中司晓表示腾讯计划在深圳大铲湾的一个半岛上,建立一个全新的未来总部——企鹅岛(非正式名称),在“企鹅岛”上,我们有可能看到腾讯在智慧城市上的种种积累和设想。
司晓介绍,“企鹅岛”的设计方案在一款沙盒 游戏 中被复制出来。这个数字孪生一方面体现出 游戏 所积累的AI 、方针等技术在建筑设计等场景的应用,另一方面,在这个虚拟仿真环境下,可以以更低成本来验证一系列交通、能源等系统的规划以及设计是否合理。
其实,刚在前文中提到的数字孪生亦是融合多种数字技术的一个概念池子,例如在数字孪生中拟出真实的智慧城市的交通控制系统,让公交和现实中的一样,等红灯、自动避让、等人上下车,所以在数字孪生城市中引入自动驾驶仿真系统,而这个系统则是基于 游戏 引擎,通过机器学习不断优化,让 游戏 里的载具去真的感知周围的环境,从而最大限度的还原现实生活场景。
也许我们已经在逐渐进入更加智慧的“在场办公”时代。在移动互联网之前,我们是离线办公,工作需要去实实在在的办公室、沟通需要面对面交流或打电话、发邮件;移动互联网普及后,办公方式再次迎来变革,特别是在疫情加速下,基于腾讯会议、Zoom、飞书等在线协作工具大家可以在线办公;而随着XR(混合现实)、感知交互、虚拟仿真等技术发展,“在场办公”未来可期。
在场时代其实并不遥远,例如Meta公司(原Facebook)前不久发布了一款VR虚拟办公室程序Horizon Workrooms,用户使用 Oculus 这样的 VR 设备便能进入这个虚拟办公室进行交互式办公,就好像是在真实的办公室办公一样。而这些随着XR等技术与触觉手套等硬件技术的发展,未来会有越来越多场景与公司从在线时代步入在场时代,即虚实共生。
司晓在演讲中还举到过一个大开脑洞的例子——火星移民。如果未来人类“火星在场”,在远程去往火星上派机器人建基地之前,我们可能会首先实现在虚拟世界中对“火星”在场,也就是给火星建一个超拟真的模型,去模拟各种可能出现的情况。
可以看到,无论是一个智慧城市概念体——企鹅岛,还是星辰大海的火星移民,其都是基于现有数字技术不断进化、融合而来,它们并不会因为某一项技术的突破便将人类带入“未来”时代,正如司晓在演讲中谈到的那样:“元宇宙这些概念本身就是一种技术渐进式发展的趋势,而这个过程需要的技术可能源自于完全不同领域的技术涌现与应用,但这两个应用方向并不必然冲突,甚至有可能是相互依存的。”
前文中提到,“未来”新时代的实现过程必然是不同领域的技术涌现与应用,而在风云诡谲的2021年,我们可以看到人工智能等数字技术在医疗、自动驾驶、安全等领域的应用深入开展,沉浸式媒体、数字虚拟人、虚实集成亦打开了全真数字世界的大门,那么在2022年数字 科技 在IT重塑(云原生、量子计算、云安全)、智能世界(人工智能、复杂机器人、星地协同智能化)、虚实共生(万物孪生、扩展现实)、网络革命(云网融合、能源互联网)四个领域又会有怎样的应用趋势呢?
一、IT重塑
如果说第一次工业革命的蒸汽机把人们带入了蒸汽时代、第二次工业革命的电力应用把人们带进了电气时代,那么第三次 科技 革命IT技术则将人们带入了互联网时代,从PC互联、移动互联到如今万物互联初现雏形,IT正在被重塑。
IT架构被重塑的最直接的表现便是“云化”,随着数字化的普及和深入,海量数据实时、灵活处理的情况日益普遍,传统IT架构越来越难以适应,许多企业都会将自己的网站部署在云端(包括公有云、混合云等),这就是所谓的企业“上云”。而随着上云进程的加快,一种基于分布部署和统一运管的分布式云——云原生开始带领企业进入全云时代(云原生是以容器、微服务、DevOps等技术为基础建立的一套云技术产品体系,可使松散耦合的系统具有弹性、可管理性和可观察性,能够更低成本、高效地调用各类云计算资源向业务交付应用)。
首先,无服务器计算(Serverless)兴起,正在成为云原生加速发展的新路径;其次,分布式云将有效拓展云原生业务构建的物理边界,大幅减轻用户多云管理负担;最后,异构计算将促进软硬件相互定义和融合发展,推动云原生基础设施性能持续突破瓶颈。
不过云原生涉及IT体系的整体变革仍面临不少挑战,例如云原生资源的多变性影响IT体系全链条的可观测性、实践过程中迁移和管理复杂度较高,其中数据隐私和安全风险则是影响云原生发展的关键问题。
《报告》认为,新一代网络攻击技术使攻击变得更加隐蔽、快速,攻击范围从个人向企业、基础设施蔓延,造成的攻击损失成指数增长。在此背景下,零信任将重塑云原生的安全新边界,成为远程办公时代有效地安全解决方案;面对攻击更加复杂、赎金不断增长的勒索攻击,云上安全防御将成为最优解;面对快速的网络攻击,全面覆盖网络、 端点以及云基础架构的扩展威胁检测与响应(XDR)升级,将促进更多的组织增强“主动免疫力”。
当前IT被重塑的不仅仅只有架构,还有算力。2021年是量子计算备受瞩目的一年,国际国内均有较为明显的科研成就,《报告》认为2021年量子计算已步入了NISQ(含噪声中等规模量子)时代,同时《报告》还认为2022年将是量子计算继续积蓄力量之年。
在硬件方面,主流量子计算硬件技术(如超导、离子阱、光量子等)将并行发展,两到三年内,量子计算有望突破1000量子比特,届时量子计算与经典计算相结合的混合计算体系或将成为更加有效的应用方案;而软件算法方面,预计在2023年前后,量子计算有希望开始在若干领域(例如组合优化、量子化学、机器学习等)实现具有应用价值的专用量子模拟机,如用于小规模的分子模拟和蒙特卡罗模拟(分子模拟是新药物、新材料开发的基础,蒙特卡罗模拟在金融领域有广泛应用),且量子计算产业链将随科研及应用发展逐步形成。
二、网络革命
IT被重塑的同时,得益于信息通信技术的快速发展,互联网从发端时主要聚焦在科研逐步向消费型网络发展,目前正向生产型网络不断演进,未来网络将从信息传输向产业服务转变,网络将更加智能化、便捷化,即云网融合构建“连接升维”。
在此背景下,当下感知与智能将成为网络技术演进的新趋势。具体而言,一方面,无线通信与无线感知加速融合可实现通信感知一体化,使网络具备原生感知能力,即从连接信息变成连接行为,从交互认知延伸到交互感知,通感一体正塑造全真全感互联;另一方面,新型无线AI网络架构和协议可以高效捕获信道特征、适应未知环境,带来物理层面的性能提升,AI构建智慧化网络已成为行业公认的发展趋势;此外,空天一体化组网(即天基、空基等网络与地基网络在系统层面实现地面与非地面网络的全面一体化)还将实现人联与物联、 无线与有线、广域和近域、空天和地面等的智能全连接,不仅可以在全球实现宽带和物联网通信,为用户提供泛在通信服务,还可以将增强定位导航、实时地球观测等新能力集成到网络系统中。
连接升维除了体现在互联网上,还体现在能源互联网身上,双碳目标正倒逼能源互联网加快发展。随着“碳达峰、碳中和”的提出,我国能源相关产业迎来了从量变到质变突破的发展元年,首先,清洁能源大规模、高比例地接入电网成为必然趋势;其次,大规模储能技术正成为新能源推广和能源革命的基础;最后,分布式能源与储能技术的变革影响着负荷侧的身份转变。
源、荷、储三端的快速变化,带来了对“网”端一体化、数字化的改造、优化需求,这些变化 将给能源互联网发展带来重大变革:在能量层,建设多能互补的综合能源系统以匹配多变的能源供需;在信息层,通过建设电力-交通耦合网络、电力-算力耦合网络等,实现智慧的能源管理和控制;在价值层,能源互联网的建设需要 探索 能源共享经济,引导全民参与,实现共建共享共赢。
三、虚实共生
经济基础决定上层建筑,底层基础技术的重塑与变革也必然会带来了应用层技术的升级与落地,在行业数字化变革进程中,数字孪生作为理解和优化物理实体的中间件,通过融合行业知识和新兴技术,从设备、产线到工厂,从街道、区域到城市,从细胞、器官到人体,正多路径并行演进推动万物孪生。
《报告》认为,研究人员、工程人员、管理人员通过数字孪生,实现对工业设备、城市街道、人体器官等的理解、优化将成为必然趋势。一方面,行业建模工具通过融合多类技术,正向实时化、显性化和友好交互方向演进;另一方面, 游戏 引擎逐步融合行业知识和前沿技术来提升数字孪生的应用能力,凭借其模拟逼真、渲染实时、开发便捷的特点,为行业数字孪生构建提供新型路径。
不过,当前虽然数字孪生应用需求处于爆发期,但其开发应用依赖行业知识沉淀、不同工具的融合协同、以及计算和网络支撑等多类技术条件,对高精度、多尺度、低时延等大场景的支持能力仍较为薄弱,发展仍处于初级阶段,未来还需要多项技术能力的突破和整合去推动数字孪生进一步发展。
当然,作为虚实共生时代双子星(分别为数字孪生与扩展(XR)现实)的扩展现实,在硬件迭代的驱动下也迎来了产业的拐点。在VR领域,随着VR光学、显示、定位和交互等硬件技术发展方向和思路的明确,超短焦的光学设计、Micro-LED、更轻便的交互控制器成为未来趋势;在AR领域,由于光学模组算力、电池限制等硬件限制,短时间内多种技术路线将会并存;值得注意的是,《报告》显示以手机为显示终端的VR 360或全景视频发展迅速,其生态已初具雏形。
总之,扩展现实已跨过了产业拐点。目前,VR在培训、教育、文旅,AR在安防巡检、工业生产等领域已经成为行业标配。《报告》认为,VR和AR作为新一代交互和计算的终端和下一代互联网的硬件入口,将带来新一轮的信息浪潮和产业链格局的重塑。
四、智能世界
IT重塑、网络革命、虚实共生,任数字 科技 与产业如何发生化学反应,人类最终的目的是打造一个智能世界,显然,我们当前正迈入这样一个世界。
首先在赋予世界“智慧”的人工智能上,人工智能已经在一些特定的任务上超越了人的能力,但在大规模应用上仍存在瓶颈,限制了产业的进一步发展。《报告》认为,未来多种人工智能技术将加速演进,且人工智能将与更多的行业深度融合,向更加普适化和工业化的方向迈进。
其一是超大模型,短期内,模型的规模会进一步提升,大模型中的数据类型将不断丰富,由目前文本为主向图像、视觉等多模态方向丰富,进而推动模型准确性和泛化能力的提升;其二是小样本学习技术,通过多任务分割网络和迁移学习,可以实现对大量异质公开数据集的利用,将学习到的知识和特征用于生成目标领域的模型,从而实现知识在不同领域之间的迁移;最后是一站式机器学习平台,通过为开发者提供从数据标注、数据预处理、模型构建、模型训练、模型评估到模型服务的全流程开发支持,可以帮助开发者更快完成业务模型的搭建,大幅降低机器学习的进入门槛,有望成为人工智能研发基础设施,推动模型工业化。
其次,多模态融合将驱动复杂任务服务机器人深入家庭生活。在感知方面,触觉传感技术突破,以及多模态感知融合技术迭代,将提升机械臂工作的精度和准确率,实现对不同材质、形状和软硬性状物品的抓握推举;理解方面,基于计算机视觉和NLP技术的进步,机器人对复杂服务任务和家庭环境的理解将进一步深入;控制方面,柔性、仿生机器人本体技术的持续进展,将显著提升人机互动的体验和安全性。
随着NLP、先进传感器等底层技术实现商用化,叠加新冠疫情加速家庭消费升级,服务机器人智能化程度不断提升,并下探至更为广阔的家用消费级市场,《报告》认为,未来3-5年,家庭服务机器人有望实现更自然的人机交互、完成更复杂的操作任务,逐步成为家政、 娱乐 、教育、陪伴等细分场景的生活助手。
最后,星地协同智能化将开启“大航天”时代。当前,航天业最大的变化便是其发展模式正由国家主导向国家和企业共同推进演化,而造成这一显著变化的核心原因在于航天智能化水平快速提升,这也将成为技术创新与突破的新契机。
《报告》认为,星地智能化协同,一方面将提升卫星海量数据智能化处理能力,通过卫星与地面站协同推理,数据计算精度可快速提升,同时卫星回传数据量大幅减少;另一方面,人工智能技术将助力卫星遥感数据融入千行百业,例如在农业领域,AI算法+卫星数据深度挖掘协助农民开展保险核保、产量预测,有望成为环境、 社会 与公司治理投资的风险预警工具;此外,航天智能化将打开航天商业化的大众服务窗口,太空旅行、空间站商业化、太空**拍摄逐步向大众市场普及,亚轨道旅行、卫星影像私人订制、时空信息数字化等新物种也将加速涌现。
面对疫情和全球产业格局调整带来的不确定性风险,我们更需要加强 科技 预判,瞄准世界 科技 前沿,引领 科技 发展方向。透过报告我们看到数字 科技 正从四大方向、十个领域推动我们进入“新时代”,并正在转化为未来的新动能,推动我国经济与人民生活更高质量发展,正如腾讯研究院院长司晓所言:“ 科技 的发展没有终点,让 科技 融入实体经济促其高质量发展,让生活更便捷、让 社会 更美好才是永恒的趋势。”
AMD处理器的服务器发热高,稳定性差,这是缺点
惠普的服务器 HP Integrity服务器为向动成长企业迈进奠定了坚实基础。作为全球最全面的行业标准服务器系列,Integrity服务器能够满足您最苛刻的业务需求,为您提供绝佳选择。其设计融合了独特创新,无论是在系统内部还是外部都带来了突破性的非凡价值。此外,它们还提供了世界一流的使用体验,并通过紧密协作来设计和构建灵活的基础设施,以使您能够从容应对变革和拓展业务。
一旦投资了合适的系统来构建IT设施的基础,您便可高枕无忧,因为您投资的价值将会随着需求的增加而不断提升。HP基于标准的服务器创新以及与业界主要ISV(独立软件开发商)强大的合作关系共同打造了全面的解决方案,使您能够轻松、经济高效地应对变革。
借助Integrity服务器,您可以选择运行各种操作系统,而不是受制于专有解决方案-带来出色的投资保护并降低了TCO(总体拥有成本)。我们创新的虚拟化和管理解决方案提高了资源利用率、简化了运营并降低了成本。同时,HP坚定不移地推广标准化的解决方案、建立强大的合作伙伴关系并提供全方位的服务、咨询和支持。HP Integrity服务器拥有行业领先的卓越性能和关键任务可靠性,专门针对最苛刻的工作负载而设计,帮助您建立协调一致的IT与业务环境。
HP Integrity服务器 = 信赖
成功的企业必须能够快速、无缝、经济高效地适应内部及外部的环境。这正是我们采用行业标准的体系结构和内建的模块化特性来设计HP Integrity服务器的原因,这样我们的系统便能够满足您当前和未来的需求。借助HP Integrity服务器,您可以选择创新的解决方案来满足业务需求,并获得世界一流的使用体验。
绝佳选择
在瞬息万变的世界中,您所面临的挑战是如何获得出色的灵活性来应对变革并拓展业务。HP Integrity服务器提供了卓越的性能来满足您最苛刻的工作负载,提供了最广泛的操作环境选择来满足不断变化的业务需求,并且提供了针对各种工作负载的一流的可用性。
除了拥有领先的性价比优势,Integrity服务器还支持行业领先的主要操作环境-HP-UX 11i、Linux®、Microsoft® Windows®Server 2003和OpenVMS-使您能够按照自已的方式来开展业务。这意味着这些高性能平台将帮助您轻松、快速地部署新的解决方案,同时帮助实现苛刻工作负载在多个操作环境之间的整合,进而带来更高的简易性、灵活性和价值。
HP Integrity服务器还提供了卓越的投资保护。随着未来业务要求的不断变化,您可以重新部署Integrity服务器,以在不同的操作系统上运行不同的IT解决方案。现有的HP 9000服务器和HP Integrity服务器以后还能够根据您的需求从机箱内轻松升级至最新的安腾2技术。此外,以平均5-10年的生命周期计算,Integrity服务器能够持续更久。
独特创新
HP实际上已经成为创新的代名词。HP Integrity服务器在设计中采用了多种创新技术,它将为您带来:
领先的虚拟化解决方案,将资源进行池化集中和共享,从而使IT供应与业务需求自动保持协调一致
简化的管理,紧紧围绕您的业务目标
优化资产利用率,使您做到事半功倍
Integrity服务器虚拟化解决方案包含Virtual Server Environment(虚拟服务器环境),它能够轻松自如地调配您的资源,随时随地满足您的需要,以实现最灵活、最高效的运营。HP还充分利用其在高可用性解决方案领域的丰富经验,向Integrity服务器增加了集群能力,以增强安腾2处理器内建的高可靠性、可用性和可维护性(RAS)等特性。
此外,Integrity服务器创新的系统设计还将帮助您让新一代安腾2架构系统发挥更高性能。HP mx2双处理器模块使您能够在同一机箱内(入门级Integrity服务器之外)部署数量加倍的安腾2处理器。mx2双处理器模块由HP开发,它将工作负载容量和性能密度提高到了此前基于单安腾2的Integrity服务器的两倍。而且,HP的可扩展处理器芯片组还提高了安腾2处理器内存和I/O子系统的可扩展性。借助中高端Integrity服务器单元板体系结构上的硬分区功能,您还能够将单个的英特尔安腾处理器与mx2双处理器模块在同一机箱内混合使用。
采用mx2双处理器模块的HP Integrity服务器拥有超凡的计算能力,它通过应用和服务器整合使资源管理变得更加简单、有效,从而带来了更高的整体性能和更低成本。整合简化了系统管理,释放出更多用于业务流程而不是IT维护的资源,并且带来了更加优化的基础设施,能够轻松、快速地适应和应对变革。此外,整合还降低了硬件、软件许可以及物理占地空间等方面的成本。
HP与主要的技术领导厂商携手打造创新的行业标准解决方案,无论是在系统内部还是外部都带来了突破性的价值。由于不再受制于专有技术,您将可以从更低的成本和风险中获得巨大优势。
在我的世界中,要造核电站,必须要先明白造核电站的意义、优劣势、原理、需求
1、热核电的意义
热核电是燃烧铀棒或者mox产生热量,用热量最终发电的核电。他的效率很高,节省铀棒,这就是他的意义所在。
2、热核电的优劣势
热核电的效率很高,发电量也很可观,这就是他的优势。劣势有很多,需要我们一一克服,比如,不稳定,消耗其它资源严重,bug多,等等。
3、热核电的原理
热核电,有的人叫它热输出,有两种方式发电。一种是核电发热,热量产生过热蒸汽,过热蒸汽产生动能,动能发电。一种是热量直接通过斯特林发电。第一种的效率要高于第二种,但是需要的材料也很多。本教程以第一种发电方式为例。
4、热核电需求的mod支持
热核电是IC2实验版的内容,我们的服务器是1710,IC2的版本是22653,更低版本的热核电我并不清楚是否适用。除此以外,还需要AE2应用能源2,如果仅仅是工业实验版,而没有AE2,核电会很不稳定甚至出现危险。
5、热核电的基本摆法
这些东西分别是,反应堆,反应仓,反应堆压力容器,反应堆红石接口,反应堆访问接口,反应堆流体接口,它们共同组成热核电的主体结构。
首先摆出一个普通核电,仓数决定以后热核电的仓数,这里以6仓核电为例。
使用反应堆压力容器,将核电框起来,大小是55。需要注意的是,反应堆压力容器,是可以共用的,也就是说,上面继续叠加一个热核电也是可以的,两台核电共用一面压力容器。
中间33的区域,放置反应堆流体、访问、红石接口,空余部分用压力容器填满(核电里面中空的部分不填)。
这样,一个热核电的主体就做好了,右键访问接口,界面会发生变化。
6、外围机器的摆放
这些机器分别是,流体热交换机,蒸汽机,蒸汽动能发生机,动能发电机,冷凝机。
我们一个一个讲这些机器的用途,首先是流体热交换机。
这个**的方块,是热量传递的标志,他的作用是,使用岩浆或者热冷却液,加热其它机器,同时产生冷却液和冷却岩浆。
左下和右下是放置流体容器的地方,中间下方式放升级的地方。左边的槽是热流体槽,右边的是冷流体槽,中间是放线圈的地方,每个线圈10hu/t的热量输出,10个线圈最多,最大100hu/t的热量输出。
下面一个机器是蒸汽机,也是最麻烦的机器。
图中有黑色大方框的是蒸汽机的正面或者背面,蒸汽机只能从侧面和顶面输出,正面背面和底面是不输出的,请注意。
这是打开蒸汽机以后的界面,右上角和左下角的数字是可以调节的。左上方代表蒸汽机压强,正上方数字表示输出的流体流量,正下方表示输入的热量,右下角表示
从左下角的水槽里输送进蒸汽机加热的液体的量。根据简单的物理学知识可以知道,压强越大,液体的沸点越高,我们给它一个压强,当左边显示的温度到达100
的时候,水会产生蒸汽,我们调节更高的压强,会在高于100的温度产生蒸汽。但是我们需要的是过热蒸汽,普通蒸汽不适用于热核电,因此我们调节压强为
221。这种情况下,需要200Hu/t的整数倍的热量,才能使蒸汽机产生源源不断的过热蒸汽。一台流体热交换机的最大输出热量是100hu/t,因此需
要两台流体热交换机给蒸汽机加热。
更多详细教程,请见附件
海拔高度
工作时:最高10,000 英尺(3000 米)
非工作时:最高15,000 英尺(4500 米)
温度
工作时:41 到95°F(5 到35℃);
海拔高于5,000 英尺时,最高温度降低速率为18°F(1℃)/1000 英尺(300 米)
非工作时:-40 到+158°F(-40 到+70℃)
最高温度变化速率:每小时36°F(20℃)
湿度
工作时:15% 到80% 相对非冷凝;最大湿球温度= 79°F(26°C)
惠普已经通过动态智能冷却技术解决了高温问题,因此,使用AMD处理器的惠普服务器时,不需要特别注意最高温度的控制。
Active Cool风扇技术拥有高风量(CFM)、高风压、最佳噪音效果、最佳功耗等特点,可仅使用100瓦电力冷却16台刀片服务器。其设计理念基于飞行器技术,扇叶转速达136英里/小时,在产生强劲气流的同时比传统风扇设计耗电量更低,在该技术正在申请20项专利,能够轻松扩展以适应未来要求最苛刻的产品蓝图要求。
惠普推动绿色刀片策略 打造绿色数据中心
随着国家政策对节能降耗要求的提高,节能降耗正成为国家、全社会关注的重点。而IT能耗在所有的电力使用当中所占比重的不断上升,已经使其成为社会提倡节能降耗主要领域之一。做为全球领先的IT公司和一家具有强烈社会责任感的企业,惠普公司积极倡导“绿色IT”的理念,并加大研发,推出了一系列的针对绿色IT的创新技术和产品。
10月26日,惠普公司在香山饭店举办了“绿色刀片”的研讨会,介绍了惠普公司新一代数据中心以及新一代刀片系统BladeSystem c-Class在供电散热等方面的绿色创新技术以及环保节能优势,并推出了针对绿色数据中心的完整解决方案。
长期以来,更强大的数据中心处理能力一直是我们追求的目标。但在能源开销与日俱增的今天,处理能力发展的另一面是需要消耗更多的资源。而且随着服务器密度的不断增大,供电需求也在相应增加,并由此产生了更多的热量。在过去的十年中,服务器供电密度平均增长了十倍。据IDC预测,到2008年IT采购成本将与能源成本持平。另一方面,数据中心的能耗中,冷却又占了能耗的60%到70%。因此,随着能源价格的节节攀升,数据中心的供电和冷却问题,已经成为所有的数据中心都无法回避的问题。
惠普公司十几年来一直致力于节能降耗技术的研究,并致力于三个层面的创新:一是数据中心层面环境级的节能技术;二是针对服务器、存储等IT产品在系统层面的绿色设计;三是对关键节能部件的研发,如供电、制冷、风扇等方面的技术创新。目前,来自惠普实验室的这些创新技术正在引领业界的绿色趋势。
针对数据中心环境层面,惠普推出了全新的动态智能冷却系统帮助客户构建新一代绿色数据中心或对原有数据中心进行改造;在设备层面,惠普的新一代绿色刀片服务器系统以能量智控(Thermal Logic)技术以及PARSEC体系架构等方面的创新成为未来数据中心节能的最关键基础设施;同时这些创新技术体现在一些关键节能部件上,如 Active Cool(主动散热)风扇、动态功率调整技术(DPS, Dynamic Power Saver)等。惠普公司的绿色创新将帮助客户通过提高能源效率来降低运营成本。
HP DSC精确制冷 实现绿色数据中心
传统数据中心机房采用的是平均制冷设计模式,但目前随着机架式服务器以及刀片服务器的出现和普及,数据中心出现了高密度服务器与低密度混合的模式,由于服务器的密度不均衡,因而产生的热量也不均衡,传统数据中心的平均制冷方法已经很难满足需求。造成目前数据中心的两个现状:一是目前85%以上的机房存在过度制冷问题;二在数据中心的供电中,只有1/3用在IT设备上,而制冷费用占到总供电的 2/3 。因此降低制冷能耗是数据中心节能的关键所在。
针对传统数据中心机房的平均制冷弊端,惠普推出了基于动态智能制冷技术的全新解决方案—— “惠普动态智能冷却系统”(DSC, Dynamic Smart Cooling)。动态智能冷却技术的目标是通过精确制冷,提高制冷效率。DSC可根据服务器运行负荷动态调控冷却系统来降低能耗,根据数据中心的大小不同,节能可达到20%至45%。
DSC结合了惠普在电源与冷却方面的现有创新技术,如惠普刀片服务器系统 c-Class架构的重要组件HP Thermal Logic等技术,通过在服务器机架上安装了很多与数据中心相连的热能探测器,可以随时把服务器的温度变化信息传递到中央监控系统。当探测器传递一个服务器温度升高的信息时,中央监控系统就会发出指令给最近的几台冷却设备,加大功率制冷来降低那台服务器的温度。当服务器的温度下降后,中央监控系统会根据探测器传递过来的新信息,发出指令给附近的冷却设备减小功率。惠普的实验数据显示,在惠普实验室的同一数据中心不采用DSC技术,冷却需要117千瓦,而采用DSC系统只需要72千瓦。
惠普刀片系统:绿色数据中心的关键生产线
如果把数据中心看作是一个“IT工厂”,那么“IT工厂”节能降耗不仅要通过DSC等技术实现“工厂级”环境方面的节能,最重要的是其中每一条“生产线”的节能降耗,而数据中心的生产线就是服务器、存储等IT设备。目前刀片系统以节约空间、便于集中管理、易于扩展和提供不间断的服务,满足了新一代数据中心对服务器的新要求,正成为未来数据中心的重要“生产线”。因此刀片系统本身的节能环保技术是未来数据中心节能降耗的关键所在。
惠普公司新一代绿色刀片系统HP BladeSystem c-Class基于工业标准的模块化设计,它不仅仅集成了刀片服务器和刀片存储,还集成了数据中心的众多要素如网络、电源/冷却和管理等,即把计算、存储、网络、电源/冷却和管理都整合到一起。同时在创新的BladeSystem c-Class刀片系统中,还充分考虑了现代数据中心基础设施对电源、冷却、连接、冗余、安全、计算以及存储等方面的需求。
在标准化的硬件平台基础上,惠普刀片系统的三大关键技术,更令竞争对手望尘莫及。首先是惠普洞察管理技术——它通过单一的控制台实现了物理和虚拟服务器、存储、网络、电源以及冷却系统的统一和自动化管理,使管理效率提升了10倍,管理员设备配比达到了1:200。第二是能量智控技术——通过有效调节电力和冷却减少能量消耗,超强冷却风扇相对传统风扇降低了服务器空气流40%,能量消耗减少 50%。最后是虚拟连接架构——大大减少了线缆数量,无需额外的交换接口管理。允许服务器额外增加、可替代、可移动,并无需管理员参与SAN和LAN的更改。
目前,惠普拥有完整的刀片服务器战略和产品线,既有支持2路或4路的ProLiant刀片服务器,也有采用安腾芯片的Integrity刀片系统,同时还有存储刀片、备份刀片等。同时,惠普BladeSystem c-Class刀片服务器系统已得到客户的广泛认可。根据IDC发布的2006年第四季度报告显示,惠普在刀片服务器的工厂营业额和出货量方面都占据了全球第一的位置。2007年第二季度,惠普刀片市场份额472%,领先竞争对手达15%,而且差距将会继续扩大。作为刀片市场的领导者,惠普 BladeSystem c-Class刀片系统将成为数据中心的关键基础设施。
PARSEC体系架构和能量智控:绿色生产线的两大核心战略
作为数据中心的关键基础设施,绿色是刀片系统的重要发展趋势之一,也是数据中心节能的关键所在。HP BladeSystem c-Class刀片系统的创新设计中,绿色就是其关键创新技术之一,其独特的PARSEC体系架构和能量智控技术就是这条绿色生产线的两大关键技术。
HP PARSEC体系结构是惠普刀片系统针对绿色策略的另一创新。目前机架服务器都采用内部几个小型局部风扇布局,这样会造成成本较高、功率较大、散热能力差、消费功率和空间。HP PARSEC(Parallel Redundant Scalable Enterprise Cooling)体系结构是一种结合了局部与中心冷却特点的混合模式。机箱被分成四个区域,每个区域分别装有风扇,为该区域的刀片服务器提供直接的冷却服务,并为所有其它部件提供冷却服务。由于服务器刀片与存储刀片冷却标准不同,而冷却标准与机箱内部的基础元件相适应,甚至有时在多重冷却区内会出现不同类型的刀片。配合惠普创新的 Active Cool风扇,用户就可以轻松获得不同的冷却配置。惠普风扇设计支持热插拔,可通过添加或移除来调节气流,使之有效地通过整个系统,让冷却变得更加行之有效。
惠普的能量智控技术(Thermal Logic)是一种结合了惠普在供电、散热等方面的创新技术的系统级节能方法,该技术提供了嵌入式温度测量与控制能力,通过即时热量监控,可追踪每个机架中机箱的散热量、内外温度以及服务器耗电情况,这使用户能够及时了解并匹配系统运行需求,与此同时以手动或自动的方式设定温度阈值。或者自动开启冷却或调整冷却水平以应对并解决产生的热量,由此实现最为精确的供电及冷却控制能力。通过能量智控管理,客户可以动态地应用散热控制来优化性能、功耗和散热性能,以充分利用电源预算,确保灵活性。采用能量智控技术,同样电力可以供应的服务器数量增加一倍,与传统的机架堆叠式设备相比,效率提升30%。在每个机架插入更多服务器的同时,所耗费的供电及冷却量却保持不变或是减小,整体设计所需部件也将减少。
Active Cool风扇、DPS、电源调整仪:生产线的每个部件都要节能
惠普BladeSystem c-Class刀片系统作为一个“绿色生产线”,通过能量智控技术和PARSEC体系架构实现了“生产线”级的节能降耗,而这条生产线上各组成部件的技术创新则是绿色生产线的关键技术保障。例如,深具革新意义的Active Cool风扇,实现智能电源管理的ProLiant 电源调整仪以及动态功率调整等技术。
风扇是散热的关键部件。风扇设计是否越大越好?答案是否定的。市场上有的刀片服务器产品采用了较大型的集中散热风扇,不仅占用空间大、噪音大,冗余性较差、有漏气通道,而且存在过渡供应、需要较高的供电负荷。
惠普刀片服务器中采用了创新的Active Cool(主动散热)风扇。Active Cool风扇的设计理念源于飞行器技术,体积小巧,扇叶转速达136英里/ 小时,在产生强劲气流的同时比传统型风扇设计耗电量更低。同时具有高风量(CFM)、高风压、最佳噪音效果、最佳功耗等特点,仅使用100瓦电力便能够冷却16台刀片服务器。这项深具革新意义的风扇当前正在申请20项专利。Active Cool风扇配合PARSEC散热技术,可根据服务器的负载自动调节风扇的工作状态,并让最节能的气流和最有效的散热通道来冷却需要的部件,有效减少了冷却能量消耗,与传统散热风扇相比,功耗降低66%,数据中心能量消耗减少50%。
在供电方面,同传统的机架服务器独立供电的方式相比,惠普的刀片系统采用集中供电,通过创新的ProLiant 电源调整仪以及动态功率调整等技术实现了智能电源管理,根据电源状况有针对性地采取策略,大大节省了电能消耗。
ProLiant 电源调整仪(ProLiant Power Regulator)可实现服务器级、基于策略的电源管理。电源调整议可以根据CPU的应用情况为其提供电源,必要时,为CPU应用提供全功率,当不需要时则可使CPU处于节电模式,这使得服务器可以实现基于策略的电源管理。事实上可通过动态和静态两种方式来控制CPU的电源状态,即电源调整议即可以设置成连续低功耗的静态工作模式,也可以设置成根据CPU使用情况自动调整电源供应的动态模式。目前电源调整议可适用于AMD或英特尔的芯片,为方便使用,惠普可通过iLO高级接口显示处理器的使用数据并通过该窗口进行配置操作。电源调整议使服务器在不损失性能的前提下节省了功率和散热成本。
惠普创新的动态功率调整技术(DPS, Dynamic Power Saver)可以实时监测机箱内的电源消耗,并根据需求自动调节电源的供应。由于电源在高负荷下运转才能发挥最大效力,通过提供与用户整体基础设施要求相匹的配电量, DPS进一步改进了耗电状况。例如,当服务器对电源的需求较少时,可以只启动一对供电模块,而使其它供电模块处于stand by状态,而不是开启所有的供电单元,但每个供电单元都以较低的效率运行。当对电源需求增加时,可及时启动STAND BY的供电模块,使之满足供电需求。这样确保了供电系统总是保持最高效的工作状态,同时确保充足的电力供应,但通过较低的供电负荷实现电力的节约。通过动态功率调整技术,每年20个功率为0075/千瓦时的机箱约节省5545美元。
传统数据中心与日俱增的能源开销备受关注,在过去十年中服务器供电费用翻番的同时,冷却系统也为数据中心的基础设施建设带来了空前的压力。为了解决节节攀升的热量与能源消耗的难题,惠普公司创新性地推出了新一代绿色刀片系统 BladeSystem c-Class和基于动态智能制冷技术DSC的绿色数据中心解决方案,通过惠普创新的PARSEC体系架构、能量智控技术(Thermal Logic)以及Active Cool风扇等在供电及散热等部件方面的创新技术来降低能耗,根据数据中心的大小不同,这些技术可为数据中心节能达到20%至45%。
0条评论