IBM 的 POWER 处理器的架构比 X86 强吗
苹果放弃的是power pc,和服务器领域用的power芯片差别还是挺大的。
power和intel x86对比,要看怎么比了。
首先,在高端服务器领域,power的大规模SMP系统性能(目前最高的power795可以配置256个4GHz处理核心)即使8路E7 v2顶配 120个核心也是难以望其项背的,当然低端入门级领域intel在同等价格的前提下性能有很大优势也是事实(企业级市场intel产品线的价格还是很宜人的)。
其次,power系统在硬件层面的可靠性、可用性、可维护性(业界俗称RAS)方面明显强于x86系统,intel只提供处理器,整机需要厂商自己去设计,中小厂商基本靠intel的公版方案做白牌装机商,只有大品牌(比如IBM HP之类)才有自己的独道设计,x86的杂牌军和IBM从芯片开始设计的整机方案无法相比。
第三,power机器一般运行AIX系统居多,少数linux系统;x86基本运行win和linux系统。AIX在系统稳定性、软件方案集成度(例如HA软件、备份软件、集群文件系统等等等等)、厂商技术支持能力强于开放平台。
第四,商用IT系统的用户选用什么平台主要看软件需求,有些要求724不能宕机不能丢数据的关键性应用在操作系统选择方面有很大的局限性(例如银行、电信等等),这些领域x86想获得机会,需要依靠应用软件移植和win/linux这类开放OS可靠性大幅提升才有可能完成,无论哪一个都不是容易做到的。
power和sparc、安腾是UNIX界的三驾马车,共同支撑起绝大部分企业的关键性应用平台,xeon从低端起家,逐渐向中端蚕食,高端市场目前还无力企及。软件层面,unix平台的缩水和win/linux的进取是不可逆转的趋势。
power和x86的对比,单纯对比芯片本身意义不大,也和普通消费者没有直接关系
眼下,中国共计装有近2亿个视频监控摄像头,而具备AI能力的摄像头仅占其中的1%。
在高清监控摄像头数量与AI渗透率不断递增的情况下,由摄像头采集的图像、视频流数据,需要更强大的分析引擎对其进行分析、处理和训练。
以北京地铁站为例,北京1000多个地铁站中平均每站都有上百个摄像头,平均每个地铁站每天流通8到10万人较为常见。保守预估每个相机每天看见1万个人,再假设对比库中有1万个目标(对于公安数据库来说并不大),这个相机每天要回答的问题就是一亿零一万个!
显然,在当前各类安防项目中,依靠纯嵌入式智能DVR和NVR均无法满足严苛的计算要求。
面对万亿级AI安防市场,在技术落地成花的十字路口,所有的安防企业高管们都会面对一个终极命题:AI安防究竟需要一款怎样强大的服务器?
谈到安防服务器,X86无处不在,一直以来,它都是包括安防在内等多个行业的“宠儿”。
“眼下安防市场很多的管理平台,譬如流媒体服务器、转发服务器、主控服务器基本基于X86架构建设,它的最大优势是比较容易开发、上手比较快,大多工程师更擅长在X86架构上做研发。”
华泰科捷CEO傅剑辉告诉雷锋网,考虑到它表现不俗的性价比,X86服务器一直都是我们采购的首选。
由此,过去多年来,X86服务器也获得了全球顶尖服务器供货商的青睐。
遗憾的是,各科成绩均“达标”的 X86服务器,在如今大热的AI浪潮面前,却遇到了一些“偏科”难题。
傅剑辉透露,从安防用户实际使用角度考量,目前X86服务器应用在安防行业主要存在三大问题:
一、CPU负责逻辑运算的单元并不多,在多任务处理时效率低下。面对海量视频信息,传统X86服务器单纯以CPU为核心的数据中心部署已经不能很好地满足并行灵活计算、多变环境的计算需求,很难在安防企业级服务器市场有惊艳的表现。
“以前的视频数据只需存在后台,做少量分析即可,也就是说存储足够大就行;今天,很多客户都希望我们能够实时处理这些海量视频信息并反馈结果,而这就意味着系统需要同时做解码、做视频结构化、做识别、搜索等等,X86明显就不够用了。”
换句话说,X86可以类比手机里的功能机,它能够满足单一的通信处理需求,而AI融入的安防市场,更需要一台强大的智能手机,配备更强大的性能以适配 游戏 、处理等个性需求。
二、在行业出现算力不够的大背景下,很多厂商打出X86服务器加上若干GPU卡的组合拳,而这种为了单纯解决算力而“拼凑”出的方案大大增加了服务器的功耗和用户成本。
从行业采用情况看,如果涉及人脸识别等AI项目时,大部分厂商会采用GPU作为人像数据结构化的处理单元,特别是在X86服务器集群中,GPU更是成为唯一选择。
在某种程度上,GPU的确解决了部分算力不足的问题,却也存在两个致命硬伤。
一是功耗大,需依托X86架构服务器运行,不适用于更为广泛的AI方案开发; 二是成本高昂,比如采用GPU方案,折算单路人脸识别成本在万元以上,相较其他千元级,甚至是百元级的方案,毫无成本优势可言,这两个致命短板,也让很多企业不得不寻求新的方案。
三、由于X86更多采用的是较为开放的LinuX系统,而非封闭的AIX系统,在稳定性和可维护性上略显不足。
“未来的市场必定是数据规模和计算能力的角逐。”
浪潮商用机器有限公司产品部张琪告诉雷锋网,随着越来越多新应用的出现,传统的X86计算架构会遇到很多瓶颈,包括数据瓶颈(处理器的计算单元以多快的速度获取和交换数据)、计算瓶颈(单位空间内能集成多少计算能力)、延迟瓶颈、通信瓶颈。
就像设计时速30码的道路难以承载均速100码的车辆通行一样,很短时间内就可造成道路拥堵甚至瘫痪。
今天来看,面对大计算、智能化场景,谁能够最先解决算力问题,又能够更好降低功耗与成本,谁就能在AI浪潮下引领鳌头。
在张琪看来,基于POWER9的高性能服务器能够很好满足AI安防时代下的高智能需求。
从AI安防实际场景所需出发,浪潮商用机器有限公司近期推出了基于POWER9服务器,搭载UltraVision视频智能分析系统的AI视觉分析智能分析解决方案(UltraVision on Power)。
AI视觉分析解决方案可以看作一个超级高效的AI大脑,它软硬结合,能够实时、准确、智能、节能地完成包括安防在内各个行业所需的复杂性数据处理工作。
“硬”,体现在POWER9架构上,它能够提供强大的图像视频的计算处理能力。相比其他处理器,POWER9支持了PCIe40、NVlink20等新一代I/O协议,能够在AI等应用中展示出更好的应用表现。
具体来看,相比X86,其单节点视频处理路数提升近3倍,达38倍提升深度学习框架AI模型训练效率,18倍更好的加速数据库性能,IO能力提升了近5倍。
另外,执行视频和图像编解码,查询搜索任务时,整机可提供单精度56TFlops和双精度28TFlops超强算力,和比X86服务器相比,单块GPU即可提供比纯CPU服务器高30倍的推理能力。
值得一提的是,该方案独有的CAPI技术,可以将延迟降低至1/36,全面加速图像处理,同时功耗降低高达30%。
18倍、38倍、3倍、5倍、30倍,看起来不大的几个数字对于安防行业来说,都是庞大数量级的提升。
这几个数字的变化,能够将各类犯罪和严重的暴力事件的防控手段从事后介入提前到事前或事中,大大减少安全事件的发生,实现公共安全从被动防御到主动防御的业务转变。
除了POWER9提供的超强算力硬核外,在软件层面,该方案还有高重UltraVision视频智能分析技术加持,如目标检测(PD)、行人重识别(RE-ID)等多项计算机视觉技术,提升目标识别准确率高达94%。
毋庸置疑,软硬结合的AI视觉分析解决方案在实际落地过程中,能够实实在在地为用户解决AI时代下的高算力与低功耗问题。
除此之外,相比其他热门方案,该方案还有两大优势不得不提。
其一、独有的利旧能力降低客户成本。
通常来说,一般的AI视频系统想要实现某些功能必须接入具备AI技术的感知摄像头,该方案在部署过程中不需要更换原有摄像头,只需要旁路接入视频采集端,即可实现AI系统;
另外,该方案还可以兼容不同品牌、不同制式的任何摄像头;可以不改变客户原服务器等硬件架构的情况下直接部署,有效降低客户部署成本。
其二、就浪潮商用机器公司本身来说,依托其在服务器领域的引领地位,拥有强大的定制化落地能力,缩短交付周期从月到天。
该方案无论是面对大数据处理、机器学习这样的AI应用,还是软件定义存储、内存数据库这一类的开源应用都会有比较好的性能表现。
毫无疑问,专为AI、云计算、大数据等新兴应用而生的AI视觉分析解决方案在客户面对严苛业务挑战时,提供了更多元化的选择。
依托这款高性能产品,用户可以更快地部署各类智能应用,缩短安防AI应用的技术迭代周期。
与此同时,性能卓越的浪潮商用机器服务器的应用不仅限于安防行业,在互联网、金融等对安全性要求高的领域,其也可以施展拳脚。
安防之外,整个 社会 正在向规模化、自动化、智能化转型升级。其中,智能化的应用方向涵盖四大方向:前端化、云端化、平台化和行业化。
在这个升级过程中,新的平台需要有新的能力做新的认知,新的认知催生新的需求和应用。
对于包括浪潮在内的 科技 公司来说,这是一次巨大的机会,同时也是一个不小的挑战,路漫漫其修远兮,必须上下而求索。雷锋网雷锋网雷锋网
非x86服务器通常指大型机、小型机等;x86服务器通常指pc服务器。
前者价格高,更稳定、安全;后者兼容性更好。
前者适用于大企业、核心系统中;后者适用于中小企业、一般性业务中。
机器之心报道
机器之心编辑部
「只需一张 GeForce 显卡,每个学生都可以拥有一台超级计算机,这正是 Alex Krizhevsky、Ilya 和 Hinton 当年训练 AI 模型 AlexNet 的方式。通过搭载在超级计算机中的 GPU,我们现在能让科学家们在 youxian 的一生之中追逐无尽的科学事业,」英伟达创始人兼首席执行官黄仁勋说道。
4 月 12 日晚,英伟达 GTC 2021 大会在线上开始了。或许是因为长期远程办公不用出门,人们惊讶地看到在自家厨房讲 Keynote 的黄老板居然留了一头摇滚范的长发:
如果你只是对他的黑色皮衣印象深刻,先对比一下 2019、2020 和 2021 的 GTC,老黄气质越来越摇滚。如此气质,黄仁勋今天推出的新产品肯定将会与众不同。
「这是世界第一款为 terabyte 级别计算设计的 CPU,」在 GTC 大会上,黄仁勋祭出了英伟达的首款中央处理器 Grace,其面向超大型 AI 模型的和高性能计算。
英伟达也要做 CPU 了
Grace 使用相对能耗较低的 Arm 核心,但它又可以为训练超大 AI 模型的系统提供 10 倍左右的性能提升。英伟达表示,它是超过一万名工程人员历经几年的研发成果,旨在满足当前世界最先进应用程序的计算需求,其具备的计算性能和吞吐速率是以往任何架构所无法比拟的。
「结合 GPU 和 DPU,Grace 为我们提供了第三种基础计算能力,并具备重新定义数据中心架构,推进 AI 前进的能力,」黄仁勋说道。
Grace 的名字来自于计算机科学家、世界最早一批的程序员,也是最早的女性程序员之一的格蕾丝 · 赫柏(Grace Hopper)。她创造了现代第一个编译器 A-0 系统,以及第一个高级商用计算机程序语言「COBOL」。计算机术语「Debug」(调试)便是她在受到从电脑中驱除蛾子的启发而开始使用的,于是她也被冠以「Debug 之母」的称号。
英伟达的 Grace 芯片利用 Arm 架构的灵活性,是专为加速计算而设计的 CPU 和服务器架构,可用于训练具有超过 1 万亿参数的下一代深度学习预训练模型。在与英伟达的 GPU 结合使用时,整套系统可以提供相比当今基于 x86 CPU 的最新 NVIDIA DGX 快 10 倍的性能。
目前英伟达自家的 DGX,使用的是 AMD 7 纳米制程的 Rome 架构 CPU。
据介绍,Grace 采用了更为先进的 5nm 制程,在内部通信能力上,它使用了英伟达第四代 NVIDIA NVLink,在 CPU 和 GPU 之间提供高达 900 GB/s 的双向带宽,相比之前的产品提升了八倍。Grace 还是第一个通过错误校正代码(ECC)等机制利用 LPDDR5x 内存系统提供服务器级可靠性的 CPU,同时提供 2 倍的内存带宽和高达 10 倍的能源效率。在架构上,它使用下一代 Arm Neoverse 内核,以高能效的设计提供高性能。
基于这款 CPU 和仍未发布的下一代 GPU,瑞士国家超级计算中心、苏黎世联邦理工大学将构建一台名为「阿尔卑斯」的超级计算机,算力 20Exaflops(目前全球第一超算「富岳」的算力约为 0537Exaflops),将实现两天训练一次 GPT-3 模型的能力,比目前基于英伟达 GPU 打造的 Selene 超级计算机快 7 倍。
美国能源部下属的洛斯阿拉莫斯国家实验室也将在 2023 年推出一台基于 Grace 的超级计算机。
GPU+CPU+DPU,三管齐下
「简单说来,目前市场上每年交付的 3000 万台数据中心服务器中,有 1/3 用于运行软件定义的数据中心堆栈,其负载的增长速度远远快于摩尔定律。除非我们找到加速的办法,否则用于运行应用的算力将会越来越少,」黄仁勋说道。「新时代的计算机需要新的芯片、新的系统架构、新的网络、新的软件和工具。」
除了造 CPU 的大新闻以外,英伟达还在一个半小时的 Keynote 里陆续发布了大量重要软硬件产品,覆盖了 AI、 汽车 、机器人、5G、实时图形、云端协作和数据中心等领域的最新进展。英伟达的技术,为我们描绘出了一幅令人神往的未来愿景。
黄仁勋表示,英伟达全新的数据中心路线图已包括 CPU、GPU 和 DPU 三类芯片,而 Grace 和 BlueField 是其中必不可少的关键组成部分。投身 Arm 架构的 CPU,并不意味着英伟达会放弃原有的 x86、Power 等架构,黄仁勋将英伟达重新定义为「三芯片」公司,覆盖 CPU、GPU 和 DPU。
对于未来的发展节奏,黄仁勋表示:「我们的发展将覆盖三个产品线——CPU、GPU 和 DPU,以每两年一次更新的节奏进行,第一年更新 x86,第二年就更新 Arm。」
最后是自动驾驶。「对于 汽车 而言,更高的算力意味着更加智能化,开发者们也能让产品更快迭代。TOPS 就是新的马力,」黄仁勋说道。
英伟达将于 2022 年投产的 NVIDIA 自动驾驶 汽车 计算系统级芯片——NVIDIA DRIVE Orin,旨在成为覆盖自动驾驶和智能车机的 汽车 中央电脑。搭载 Orin 的量产车现在还没法买到,但英伟达已经在为下一代,超过 L5 驾驶能力的计算系统作出计划了。
Atlan 是这家公司为 汽车 行业设计的下一代 SoC,其将采用 Grace 下一代 CPU 和下一代安培架构 GPU,同时也集成数据处理单元 (DPU)。如此一来,Atlan 可以达到每秒超过 1000 万亿次(TOPS)运算次数。如果一切顺利的话,2025 年新生产的车型将会搭载 Atlan 芯片。
与此同时,英伟达还展示了 Hyperion 8 自动驾驶 汽车 平台,业内算力最强的自动驾驶 汽车 模板——搭载了 3 套 Orin 中心计算机。
不知这些更强的芯片和系统,能否应付未来几年里人们对于算力无穷无尽的需求。在 GTC 2021 上,英伟达对于深度学习模型的指数增长图又更新了。「三年间,大规模预训练模型的参数量增加了 3000 倍。我们估计在 2023 年会出现 100 万亿参数的模型。」黄仁勋说道。
英伟达今天发布的一系列产品,让这家公司在几乎所有行业和领域都能为你提供最强大的机器学习算力。在黄仁勋的 Keynote 发表时,这家公司的股票一度突破了 600 美元大关。
「20 年前,这一切都只是科幻小说的情节;10 年前,它们只是梦想;今天,我们正在实现这些愿景。
英伟达每年在 GTC 大会上发布的新产品,已经成为了行业发展的风向。不知在 Grace 推出之后,未来我们的服务器和电脑是否会快速进入 Arm 时代。
X86服务器就是采用一系列以“86”为结尾处理器作为CPU的服务器。在现在的服务器市场里,X86价格便宜,兼容性又好。比较适合主中小企业和学校使用。而且咱们国产的X86服务器都很好,如果选择的话,可以看看国产品牌。
扩展资料:
x86服务器使用CISC架构的处理器,类似于人们触摸的台式笔记本电脑。随着英特尔Xeon处理器的不断改进,有传言称x86服务器将占领小型计算机市场。
X86是一种基于CISC(复杂指令集)体系结构的处理器。大多数CPU制造商(如Amd,Intel)生产这种处理器。与具有精简指令结构计算机(RISC)体系结构的PowerPC(如苹果计算机)不同,CISC处理器按顺序执行程序指令,并按顺序执行每个指令中的操作。
0条评论