Docker安装RabbitMQ并设置用户名密码

Docker安装RabbitMQ并设置用户名密码,第1张

1 地址访问不到

这是因为我们演示的是安装在云服务器中的docker中,我们需要去云服务器的控制台中的安全组把15672端口打开,如果是安装的本地的docker就没有这个问题。

2 如文章开头所示,我们没有 Username 和 Password

这是因为要在rabbitmq中添加用户

这时候在浏览器中输入 ip:15672 用刚才设置的用户名和密码就可以登入了

(注意!本次演示的安装设备是云服务器,后面在浏览器中访问时地址中的ip要注意用云服务的公网ip)

Docker是世界领先的软件容器平台。Docker使用Google公司推出的Go语言进行开发实现,基于Linux内核的cgroup,namespace,以及AUFS类的UnionFS等技术,对进程进行封装隔离,属于操作系统层面的虚拟化技术。 由于隔离的进程独立于宿主和其它的隔离的进程,因此也称其为容器,但docker本身并不是容器,它是创建容器的工具,是应用容器引擎。

Docke最初实现是基于LXC。LXC为Linux Container的简写。可以提供轻量级的虚拟化,以便隔离进程和资源,而且不需要提供指令解释机制以及全虚拟化的其他复杂性。相当于C++中的NameSpace。容器有效地将由单个操作系统管理的资源划分到孤立的组中,以更好地在孤立的组之间平衡有冲突的资源使用需求。

docker并不是LXC替代品,docker底层使用了LXC来实现,LXC将linux进程沙盒化,使得进程之间相互隔离,并且能够课哦内阁制各进程的资源分配。在LXC的基础之上,docker提供了一系列更强大的功能。

Docker能够自动执行重复性任务,例如搭建和配置开发环境,从而解放了开发人员以便他们专注在真正重要的事情上:构建杰出的软件。

用户可以方便地创建和使用容器,把自己的应用放入容器。容器还可以进行版本管理、复制、分享、修改,就像管理普通的代码一样。

docker的三个概念:

镜像(Image):类似于虚拟机中的镜像,是一个包含有文件系统的面向Docker引擎的只读模板。任何应用程序运行都需要环境,而镜像就是用来提供这种运行环境的。例如一个Ubuntu镜像就是一个包含Ubuntu操作系统环境的模板,同理在该镜像上装上Apache软件,就可以称为Apache镜像。

容器(Container):类似于一个轻量级的沙盒,可以将其看作一个极简的Linux系统环境(包括root权限、进程空间、用户空间和网络空间等),以及运行在其中的应用程序。Docker引擎利用容器来运行、隔离各个应用。容器是镜像创建的应用实例,可以创建、启动、停止、删除容器,各个容器之间是是相互隔离的,互不影响。注意:镜像本身是只读的,容器从镜像启动时,Docker在镜像的上层创建一个可写层,镜像本身不变。

仓库(Repository):类似于代码仓库,这里是镜像仓库,是Docker用来集中存放镜像文件的地方。注意与注册服务器(Registry)的区别:注册服务器是存放仓库的地方,一般会有多个仓库;而仓库是存放镜像的地方,一般每个仓库存放一类镜像,每个镜像利用tag进行区分,比如Ubuntu仓库存放有多个版本(1204、1404等)的Ubuntu镜像。

docker的用途:

官方给的是bulid ship run,就是编译、装载、运行。就是实现了应用的封装、部署、运行的生命周期管理只要在glibc的环境下,都可以运行。

谐云自主研发的容器云平台,是基于Docker和Kubernetes技术构建的一套完整IT标准化和自动化框架,以“面向终态、优化IT资源”为目标的新一代PaaS平台,能够提高企业的IT管理能力,在降低运营成本和风险的同时,获得更高的运维效率,保障业务稳定运行和高效迭代。

蘑菇街基于 OpenStack 和 Docker 的私有云实践

本次主要想分享一下过去一年时间里,我们在建设基于Docker的私有云实践过程中,曾经遇到过的问题,如何解决的经验,还有我们的体会和思考,与大家共勉。

在生产环境中使用Docker有一些经历和经验。私有云项目是2014年圣诞节期间上线的,从无到有,经过了半年多的发展,经历了3次大促,已经逐渐形成了一定的规模。

架构

集群管理

大家知道,Docker自身的集群管理能力在当时条件下还很不成熟,因此我们没有选择刚出现的 Swarm,而是用了业界最成熟的OpenStack,这样能同时管理Docker和KVM。我们把Docker当成虚拟机来跑,是为了能满足业务上对虚拟化的需求。今后的思路是微服务化,把应用进行拆分,变成一个个微服务,实现PaaS基于应用的部署和发布。

通过OpenStack如何管理Docker我们采用的是OpenStack+nova-docker+Docker的架构模式。nova- docker是StackForge上一个开源项目,它做为nova的一个插件,通过调用Docker的RESTful接口来控制容器的启停等动作。

我们在IaaS基础上自研了编排调度等组件,支持应用的弹性伸缩、灰度升级等功能,并支持一定的调度策略,从而实现了PaaS层的主要功能。

同时,基于Docker和Jenkins实现了持续集成(CI)。Git中的项目如果发生了git push等动作,便会触发Jenkins Job进行自动构建,如果构建成功便会生成Docker Image并push到镜像仓库。基于CI生成的Docker Image,可以通过PaaS的API或界面,进行开发测试环境的实例更新,并最终进行生产环境的实例更新,从而实现持续集成和持续交付。

网络和存储

网络方面,我们没有采用Docker默认提供的NAT网络模式,NAT会造成一定的性能损失。通过OpenStack,我们支持Linux bridge和Open vSwitch,不需要启动iptables,Docker的性能接近物理机的95%。

容器的监控

监控方面,我们自研了container tools,实现了容器load值的计算,替换了原有的top、free、iostat、uptime等命令。这样业务方在容器内使用常用命令时看到的是容器的值,而不是整个物理机的。目前我们正在移植Lxcfs到我们的平台上。

我们还在宿主机上增加了多个阈值监控和报警,比如关键进程监控、日志监控、实时pid数量、网络连接跟踪数、容器oom报警等等。

冗灾和隔离性

冗灾和隔离性方面,我们做了大量的冗灾预案和技术准备。我们能够在不启动docker daemon的情况下,离线恢复Docker中的数据。同时,我们支持Docker的跨物理机冷迁移,支持动态的CPU扩容/缩容,网络IO磁盘IO的限速。

遇到的问题及解决方法

接近一年不到的产品化和实际使用中我们遇到过各种的问题,使用Docker的过程也是不断优化Docker、不断定位问题、解决问题的过程。

我们现在的生产环境用的是CentOS 65。曾经有个业务方误以为他用的Docker容器是物理机,在Docker容器里面又装了一个Docker,瞬间导致内核crash,影响了同一台物理机的其他Docker容器。

经过事后分析是2632-431版本的内核对network namespace支持不好引起的,在Docker内创建bridge会导致内核crash。upstream修复了这个bug,从2632-431升级到2632-504后问题解决。

还有一个用户写的程序有bug,创建的线程没有及时回收,容器中产生了大量的线程,最后在宿主机上都无法执行命令或者ssh登陆,报的错是"bash: fork: Cannot allocate memory",但通过free看空闲的内存却是足够的。

经过分析,发现是内核对pid的隔离性支持不完善,pid_max(/proc/sys/kernel/pid_max)是全局共享的。当一个容器中的pid数目达到上限32768,会导致宿主机和其他容器无法创建新的进程。最新的43-rc1才支持对每个容器进行pid_max限制。

我们还观察到docker的宿主机内核日志中会产生乱序的问题。经过分析后发现是由于内核中只有一个log_buf缓冲区,所有printk打印的日志先放到这个缓冲区中,docker host以及container上的rsyslogd都会通过syslog从kernel的log_buf缓冲区中取日志,导致日志混乱。通过修改 container里的rsyslog配置,只让宿主机去读kernel日志,就能解决这个问题。

除此之外,我们还解决了device mapper的dm-thin discard导致内核crash等问题。

体会和思考

最后分享一下我们的体会和思考,相比KVM比较成熟的虚拟化技术,容器目前还有很多不完善的地方,除了集群管理、网络和存储,最重要的还是稳定性。影响稳定性的主要还是隔离性的不完善造成的,一个容器内引起的问题可能会影响整个系统。

容器的memcg无法回收slab cache,也不对dirty cache量进行限制,更容易发生OOM问题。还有,procfs上的一些文件接口还无法做到per-container,比如pid_max。

另外一点是对容器下的运维手段和运维经验的冲击。有些系统维护工具,比如ss,free,df等在容器中无法使用了,或者使用的结果跟物理机不一致,因为系统维护工具一般都会访问procfs下的文件,而这些工具或是需要改造,或是需要进行适配。

虽然容器还不完善,但是我们还是十分坚定的看好容器未来的发展。Kubernetes、Mesos、Hyper、CRIU、runC等容器相关的开源软件,都是我们关注的重点。

Q&A

Q:请问容器间的负载均衡是如何做的

A: 容器间的负载均衡,更多是PaaS和SaaS层面的。我们的P层支持4层和7层的动态路由,通过域名的方式,或者名字服务来暴露出对外的接口。我们能够做到基于容器的灰度升级,和弹性伸缩。

Q:请问你们的OpenStack是运行在CentOS 65上的吗

A: 是的,但是我们针对OpenStack和Docker依赖的包进行了升级。我们维护了内部的yum源。

Q:请问容器IP是静态编排还是动态获取的

A: 这个跟运维所管理的网络模式有关,我们内部的网络没有DHCP服务,因此对于IaaS层,容器的IP是静态分配的。对于PaaS层来说,如果有DHCP服务,容器的App所暴露出来IP和端口就可以做到动态的。

Q:请问你们当时部署的时候有没有尝试过用Ubuntu,有没有研究过两个系统间的区别,另外请问你们在OpenStack上是怎样对这些虚拟机监控的

A: 我们没有尝试过Ubuntu,因为公司生产环境上用的是CentOS。我们的中间件团队负责公司机器的监控,我们和监控团队配合,将监控的agent程序部署到宿主机和每个容器里,这样就可以当成虚拟机来进行监控。

当然,容器的数据是需要从cgroups里来取,这部分提取数据的工作,是我们来实现的。

Q:容器间的网络选型有什么建议,据说采用虚拟网卡比物理网卡有不小的性能损失,Docker自带的weaves和ovs能胜任吗

A: 容器的网络不建议用默认的NAT方式,因为NAT会造成一定的性能损失。之前我的分享中提到过,不需要启动iptables,Docker的性能接近物理机的95%。Docker的weaves底层应该还是采用了网桥或者Open vSwitch。建议可以看一下nova-docker的源码,这样会比较容易理解。

Q:静态IP通过LXC实现的吗

A: 静态IP的实现是在nova-docker的novadocker/virt/docker/vifspy中实现的。实现的原理就是通过ip命令添加 veth pair,然后用ip link set/ip netns exec等一系列命令来实现的,设置的原理和weaves类似。

Q:容器内的进程gdb你们怎么弄的,把gdb打包到容器内吗

A: 容器内的gdb不会有问题的,可以直接yum install gdb。

Q:共享存储能直接mount到容器里吗

A: 虽然没试过,但这个通过docker -v的方式应该没什么问题。

Q:不启动Docker Daemon的情况下,离线恢复Docker中的数据是咋做到的

A: 离线恢复的原理是用dmsetup create命令创建一个临时的dm设备,映射到Docker实例所用的dm设备号,通过mount这个临时设备,就可以恢复出原来的数据。

Q:Docker的跨物理机冷迁移,支持动态的CPU扩容/缩容,网络IO磁盘IO的限速,是怎么实现的,能具体说说吗

A:Docker的冷迁移是通过修改nova-docker,来实现OpenStack迁移的接口,具体来说,就是在两台物理机间通过docker commit,docker push到内部的registry,然后docker pull snapshot来完成的。

动态的CPU扩容/缩容,网络IO磁盘IO的限速主要是通过novadocker来修改cgroups中的cpuset、iops、bps还有TC的参数来实现的。

Q:请问你们未来会不会考虑使用Magnum项目,还是会选择Swarm

A:这些都是我们备选的方案,可能会考虑Swarm。因为Magnum底层还是调用了Kubernetes这样的集群管理方案,与其用Magnum,不如直接选择Swarm或者是Kubernetes。当然,这只是我个人的看法。

Q:你们的业务是基于同一个镜像么,如果是不同的镜像,那么计算节点如何保证容器能够快速启动

A:运维会维护一套统一的基础镜像。其他业务的镜像会基于这个镜像来制作。我们在初始化计算节点的时候就会通过docker pull把基础镜像拉到本地,这也是很多公司通用的做法,据我了解,腾讯、360都是类似的做法。

Q:做热迁移,有没有考虑继续使用传统共享存储的来做

A: 分布式存储和共享存储都在考虑范围内,我们下一步,就计划做容器的热迁移。

Q:请问你们是直接将公网IP绑定到容器吗,还是通过其他方式映射到容器的私有IP,如果是映射如何解决原本二层的VLAN隔离

A:因为我们是私有云,不涉及floating ip的问题,所以你可以认为是公网IP。VLAN的二层隔离完全可以在交换机上作。我们用Open vSwitch划分不同的VLAN,就实现了Docker容器和物理机的网络隔离。

Q:Device mapper dm-thin discard问题能说的详细些吗

A:4月份的时候,有两台宿主机经常无故重启。首先想到的是查看/var/log/messages日志,但是在重启时间点附近没有找到与重启相关的信息。而后在/var/crash目录下,找到了内核crash的日志vmcore-dmesgtxt。日志的生成时间与宿主机重启时间一致,可以说明宿主机是发生了kernel crash然后导致的自动重启。“kernel BUG at drivers/md/persistent-data/dm-btree-removec:181!”。 从堆栈可以看出在做dm-thin的discard操作(process prepared discard),虽然不知道引起bug的根本原因,但是直接原因是discard操作引发的,可以关闭discard support来规避。

我们将所有的宿主机配置都禁用discard功能后,再没有出现过同样的问题。

在今年CNUTCon的大会上,腾讯和大众点评在分享他们使用Docker的时候也提到了这个crash,他们的解决方法和我们完全一样。

Q:阈值监控和告警那块,有高中低多种级别的告警吗,如果当前出现低级告警,是否会采取一些限制用户接入或者砍掉当前用户正在使用的业务,还是任由事态发展

A:告警这块,运维有专门的PE负责线上业务的稳定性。当出现告警时,业务方和PE会同时收到告警信息。如果是影响单个虚拟机的,PE会告知业务方,如果严重的,甚至可以及时下掉业务。我们会和PE合作,让业务方及时将业务迁移走。

Q:你们自研的container tools有没有开源,GitHub上有没有你们的代码,如何还没开源,后期有望开源吗,关于监控容器的细粒度,你们是如何考虑的

A:虽然我们目前还没有开源,单我觉得开源出来的是完全没问题的,请大家等我们的好消息。关于监控容器的细粒度,主要想法是在宿主机层面来监控容器的健康状态,而容器内部的监控,是由业务方来做的。

Q:请问容器的layer有关心过层数么,底层的文件系统是ext4么,有优化策略么

A:当然有关心,我们通过合并镜像层次来优化docker pull镜像的时间。在docker pull时,每一层校验的耗时很长,通过减小层数,不仅大小变小,docker pull时间也大幅缩短。

Q:容器的memcg无法回收slab cache,也不对dirty cache量进行限制,更容易发生OOM问题。----这个缓存问题你们是怎么处理的

A:我们根据实际的经验值,把一部分的cache当做used内存来计算,尽量逼近真实的使用值。另外针对容器,内存报警阈值适当调低。同时添加容器OOM的告警。如果升级到CentOS 7,还可以配置kmemlimit_in_bytes来做一定的限制。

Q:能详细介绍下你们容器网络的隔离

A:访问隔离,目前二层隔离我们主要用VLAN,后面也会考虑VXLAN做隔离。 网络流控,我们是就是使用OVS自带的基于port的QoS,底层用的还是TC,后面还会考虑基于flow的流控。

Q:请问你们这一套都是用的CentOS 65吗,这样技术的实现。是运维还是开发参与的多

A:生产环境上稳定性是第一位的。CentOS 65主要是运维负责全公司的统一维护。我们会给运维在大版本升级时提建议。同时做好虚拟化本身的稳定性工作。

Q:请问容器和容器直接是怎么通信的网络怎么设置

A:你是指同一台物理机上的吗我们目前还是通过IP方式来进行通信。具体的网络可以采用网桥模式,或者VLAN模式。我们用Open vSwitch支持VLAN模式,可以做到容器间的隔离或者通信。

Q:你们是使用nova-api的方式集成Dcoker吗,Docker的高级特性是否可以使用,如docker-api,另外为什么不使用Heat集成Docker

A:我们是用nova-docker这个开源软件实现的,nova-docker是StackForge上一个开源项目,它做为nova的一个插件,替换了已有的libvirt,通过调用Docker的RESTful接口来控制容器的启停等动作。

使用Heat还是NOVA来集成Docker业界确实一直存在争议的,我们更多的是考虑我们自身想解决的问题。Heat本身依赖的关系较为复杂,其实业界用的也并不多,否则社区就不会推出Magnum了。

Q:目前你们有没有容器跨DC的实践或类似的方向

A:我们已经在多个机房部署了多套集群,每个机房有一套独立的集群,在此之上,我们开发了自己的管理平台,能够实现对多集群的统一管理。同时,我们搭建了Docker Registry V1,内部准备升级到Docker Registry V2,能够实现Docker镜像的跨DC mirror功能。

Q:我现在也在推进Docker的持续集成与集群管理,但发现容器多了管理也是个问题,比如容器的弹性管理与资源监控,Kubernetes、Mesos哪个比较好一些,如果用在业务上,那对外的域名解析如何做呢,因为都是通过宿主机来通信,而它只有一个对外IP

A: 对于Kubernetes和Mesos我们还在预研阶段,我们目前的P层调度是自研的,我们是通过etcd来维护实例的状态,端口等信息。对于7层的可以通过Nginx来解析,对于4层,需要依赖于naming服务。我们内部有自研的naming服务,因此我们可以解决这些问题。对外虽然只有一个IP,但是暴露的端口是不同的。

Q:你们有考虑使用Hyper Hypernetes吗 实现容器与宿主机内核隔离同时保证启动速度

A:Hyper我们一直在关注,Hyper是个很不错的想法,未来也不排除会使用Hyper。其实我们最希望Hyper实现的是热迁移,这是目前Docker还做不到的。

Q:你们宿主机一般用的什么配置独立主机还是云服务器

A:我们有自己的机房,用的是独立的服务器,物理机。

Q:容器跨host通信使用哪一种解决方案

A: 容器跨host就必须使用3层来通信,也就是IP,容器可以有独立的IP,或者宿主机IP+端口映射的方式来实现。我们目前用的比较多的还是独立ip的方式,易于管理。

Q:感觉贵公司对Docker的使用比较像虚拟机,为什么不直接考虑从容器的角度来使用,是历史原因么

A:我们首先考虑的是用户的接受程度和改造的成本。从用户的角度来说,他并不关心业务是跑在容器里,还是虚拟机里,他更关心的是应用的部署效率,对应用本身的稳定性和性能的影响。从容器的角度,一些业务方已有的应用可能需要比较大的改造。比如日志系统,全链路监控等等。当然,最主要的是对已有运维系统的冲击会比较大。容器的管理对运维来说是个挑战,运维的接受是需要一个过程的。

当然,把Docker当成容器来封装应用,来实现PaaS的部署和动态调度,这是我们的目标,事实上我们也在往这个方向努力。这个也需要业务方把应用进行拆分,实现微服务化,这个需要一个过程。

Q:其实我们也想用容器当虚拟机使用。你们用虚拟机跑什么中间件我们想解决测试关键对大量相对独立环境WebLogic的矛盾

A:我们跑的业务有很多,从前台的主站Web,到后端的中间件服务。我们的中间件服务是另外团队自研的产品,实现前后台业务逻辑的分离。

Q:贵公司用OpenStack同时管理Docker和KVM是否有自己开发Web配置界面,还是单纯用API管理

A:我们有自研的Web管理平台,我们希望通过一个平台管理多个集群,并且对接运维、日志、监控等系统,对外暴露统一的API接口。

Q:上面分享的一个案例中,关于26内核namespace的bug,这个低版本的内核可以安装Docker环境吗,Docker目前对procfs的隔离还不完善,你们开发的container tools是基于应用层的还是需要修改内核

A:安装和使用应该没问题,但如果上生产环境,是需要全面的考虑的,主要还是稳定性和隔离性不够,低版本的内核更容易造成系统 crash或者各种严重的问题,有些其实不是bug,而是功能不完善,比如容器内创建网桥会导致crash,就是network namespace内核支持不完善引起的。

我们开发的container tools是基于应用的,不需要修改内核。

Q:关于冗灾方面有没有更详细的介绍,比如离线状态如何实现数据恢复的

A:离线状态如何实现恢复数据,这个我在之前已经回答过了,具体来说,是用dmsetup create命令创建一个临时的dm设备,映射到docker实例所用的dm设备号,通过mount这个临时设备,就可以恢复出原来的数据。其他的冗灾方案,因为内容比较多,可以再另外组织一次分享了。你可以关注一下http://moguio/,到时候我们会分享出来。

Q:贵公司目前线上容器化的系统,无状态为主还是有状态为主,在场景选择上有什么考虑或难点

A:互联网公司的应用主要是以无状态的为主。有状态的业务其实从业务层面也可以改造成部分有状态,或者完全不状态的应用。不太明白你说的场景选择,但我们尽量满足业务方的各种需求。

对于一些本身对稳定性要求很高,或对时延IO特别敏感,比如redis业务,无法做到完全隔离或者无状态的,我们不建议他们用容器。

多进程好还是多线程好等等,并不是说因为Spark很火就一定要使用它。在遇到这些问题的时候、图计算,目前我们还在继续这方面的工作:作为当前流行的大数据处理技术? 陈,它能快速创建一个Spark集群供大家使用,我们使用OpenStack? 陈。 问,Hadoop软硬件协同优化,在OpenPOWER架构的服务器上做Spark的性能分析与优化:您在本次演讲中将分享哪些话题。 问。多参与Spark社区的讨论。曾在《程序员》杂志分享过多篇分布式计算、Docker和Spark打造SuperVessel大数据公有云”,给upstrEAM贡献代码都是很好的切入方式、SQL,并拥有八项大数据领域的技术专利,MapReduce性能分析与调优工具。例如还有很多公司在用Impala做数据分析:企业想要拥抱Spark技术,对Swift对象存储的性能优化等等。例如与Docker Container更好的集成,大数据云方向的技术负责人,Spark还是有很多工作可以做的?企业如果想快速应用Spark 应该如何去做,具体的技术选型应该根据自己的业务场景,Docker Container因为在提升云的资源利用率和生产效率方面的优势而备受瞩目,高性能FPGA加速器在大数据平台上应用等项目,再去调整相关的参数去优化这些性能瓶颈,一些公司在用Storm和Samaza做流计算: 相比于MapReduce在性能上得到了很大提升?

1什么是Docker

借用下网上传统虚拟机与Docker的对比。

传统虚拟化应用程序中,不仅包含应用程序和必要的二进制文件库,还包含一个完整的操作系统。

而Docker容器仅包含应用程序和相关依赖项,在主机的操作系统用户空间中作为一个独立进程运行,与其他容器共享内核,从而实现了虚拟机的资源隔离和分配,具有更高的可移植性和效率提高。

2为什么使用Docker

1更快速的交付和部署

开发者可以使用一个标准的镜像来构建一套开发容器,开发完成之后,运维人员可以直接 使用这个容器来部署代码。

2高效部署和扩容

Docker 容器几乎可以在任意的平台上运行,包括物理机、虚拟机、公有云、私有云、个人电脑、服务器等。

3更高的资源利用率

Docker 对系统资源的利用率很高,一台主机上可以同时运行数千个 Docker 容器。容器除了运行其中应用外,基本不消耗额外的系统资源,使得应用的性能很高,同时系统的开销尽量小。传统虚拟机方式运行 10 个不同的应用就要起 10 个虚拟机,而Docker 只需要启动 10 个隔离的应用即可。

4更简单的管理

使用 Docker,只需要小小的修改,就可以替代以往大量的更新工作。所有的修改都以增量的方式被分发和更新,从而实现自动化并且高效的管理。

3Docker的工作原理和概念

自己制作镜像然后上传仓库或使用仓库已有的镜像文件拉取到容器中部署。

为了方便Docker的说明,本次例子使用虚拟机安装CentOS 7来演示。CentOS 7的安装请等查看下篇文章或自行百度。

1安装之前的准备工作

按照顺序,执行如下操作

1、安装必要的一些系统工具

2、添加软件源信息

3、更新并安装Docker-CE

安装准备工作

2开启Docker服务

运行docker version 如果出现以下情况,说明当前用户没有 root相关操作权限

无root权限

解决思路

先查看有多少镜像

运行docker run hello-world 测试命令,如果出现下方红框内消息,证明安装成功

3查看docker基本信息和版本

1构建Nginx基础镜像

查询nginx镜像

镜像拉取

查看对外的访问路径

怎么才能访问刚才启用的nginx

nginx页面内容

我们可以进入容器,看下这个容器是什么样子

查看nginx在哪个位置

我们发现尽管启动了nginx,但是在外部还是不能访问,这是因为docker具有隔离机制,要不然怎么叫做容器化部署呢

Docker内nginx端口

对Nginx进行外网端口映射;

2构建Tomcat基础镜像

打开容器后,默认安装目录在 /usr/local/

3创建自己的专属镜像

用Dockerfile来制作镜像

创建一个新的镜像,并起名字为nywlw

查看新的镜像

运行自己创建的容器

4删除容器实例

5删除镜像

每天发布更多新鲜有含量的技术文章、总有一款适合你。

基于微服务架构和Docker容器技术的PaaS云平台建设目标是给我们的开发人员提供一套服务快速开发、部署、运维管理、持续开发持续集成的流程。平台提供基础设施、中间件、数据服务、云服务器等资源,开发人员只需要开发业务代码并提交到平台代码库,做一些必要的配置,系统会自动构建、部署,实现应用的敏捷开发、快速迭代。在系统架构上,PaaS云平台主要分为微服务架构、Docker容器技术、DveOps三部分,这篇文章重点介绍微服务架构的实施。

如果想学习Java工程化、高性能及分布式、深入浅出。微服务、Spring,MyBatis,Netty源码分析的朋友可以加我的Java高级交流:854630135,群里有阿里大牛直播讲解技术,以及Java大型互联网技术的视频免费分享给大家。

实施微服务需要投入大量的技术力量来开发基础设施,这对很多公司来说显然是不现实的,别担心,业界已经有非常优秀的开源框架供我们参考使用。目前业界比较成熟的微服务框架有Netflix、Spring Cloud和阿里的Dubbo等。Spring Cloud是基于Spring Boot的一整套实现微服务的框架,它提供了开发微服务所需的组件,跟Spring Boot一起使用的话开发微服务架构的云服务会变的很方便。Spring Cloud包含很多子框架,其中Spring Cloud Netflix是其中的一套框架,在我们的微服务架构设计中,就使用了很多Spring Cloud Netflix框架的组件。Spring Cloud Netflix项目的时间还不长,相关的文档资料很少,博主当时研究这套框架啃了很多英文文档,简直痛苦不堪。对于刚开始接触这套框架的同学,要搭建一套微服务应用架构,可能会不知道如何下手,接下来介绍我们的微服务架构搭建过程以及 需要那些 框架或组件来支持微服务架构。

为了直接明了的展示微服务架构的组成及原理,画了一张系统架构图,如下:

从上图可以看出,微服务访问大致路径为:外部请求 → 负载均衡 → 服务网关(GateWay)→ 微服务 → 数据服务/消息服务。服务网关和微服务都会用到服务注册和发现来调用依赖的其他服务,各服务集群都能通过配置中心服务来获得配置信息。

服务网关(GateWay)

网关是外界系统(如:客户端浏览器、移动设备等)和企业内部系统之间的一道门,所有的客户端请求通过网关访问后台服务。为了应对高并发访问,服务网关以集群形式部署,这就意味着需要做负载均衡,我们采用了亚马逊EC2作为虚拟云服务器,采用ELB(Elastic Load Balancing)做负载均衡。EC2具有自动配置容量功能,当用户流量达到尖峰,EC2可以自动增加更多的容量以维持虚拟主机的性能。ELB弹性负载均衡,在多个实例间自动分配应用的传入流量。为了保证安全性,客户端请求需要使用https加密保护,这就需要我们进行SSL卸载,使用Nginx对加密请求进行卸载处理。外部请求经过ELB负载均衡后路由到GateWay集群中的某个GateWay服务,由GateWay服务转发到微服务。服务网关作为内部系统的边界,它有以下基本能力:

1、动态路由:动态的将请求路由到所需要的后端服务集群。虽然内部是复杂的分布式微服务网状结构,但是外部系统从网关看就像是一个整体服务,网关屏蔽了后端服务的复杂性。

2、限流和容错:为每种类型的请求分配容量,当请求数量超过阀值时抛掉外部请求,限制流量,保护后台服务不被大流量冲垮;党内部服务出现故障时直接在边界创建一些响应,集中做容错处理,而不是将请求转发到内部集群,保证用户良好的体验。

3、身份认证和安全性控制:对每个外部请求进行用户认证,拒绝没有通过认证的请求,还能通过访问模式分析,实现反爬虫功能。

4、监控:网关可以收集有意义的数据和统计,为后台服务优化提供数据支持。

5、访问日志:网关可以收集访问日志信息,比如访问的是哪个服务?处理过程(出现什么异常)和结果?花费多少时间?通过分析日志内容,对后台系统做进一步优化。

我们采用Spring Cloud Netflix框架的开源组件Zuul来实现网关服务。Zuul使用一系列不同类型的过滤器(Filter),通过重写过滤器,使我们能够灵活的实现网关(GateWay)的各种功能。

如果想学习Java工程化、高性能及分布式、深入浅出。微服务、Spring,MyBatis,Netty源码分析的朋友可以加我的Java高级交流:854630135,群里有阿里大牛直播讲解技术,以及Java大型互联网技术的视频免费分享给大家。

服务注册与发现

由于微服务架构是由一系列职责单一的细粒度服务构成的网状结构,服务之间通过轻量机制进行通信,这就引入了服务注册与发现的问题,服务的提供方要注册报告服务地址,服务调用放要能发现目标服务。我们的微服务架构中使用了Eureka组件来实现服务的注册与发现。所有的微服务(通过配置Eureka服务信息)到Eureka服务器中进行注册,并定时发送心跳进行 健康 检查,Eureka默认配置是30秒发送一次心跳,表明服务仍然处于存活状态,发送心跳的时间间隔可以通过Eureka的配置参数自行配置,Eureka服务器在接收到服务实例的最后一次心跳后,需要等待90秒(默认配置90秒,可以通过配置参数进行修改)后,才认定服务已经死亡(即连续3次没有接收到心跳),在Eureka自我保护模式关闭的情况下会清除该服务的注册信息。所谓的自我保护模式是指,出现网络分区、Eureka在短时间内丢失过多的服务时,会进入自我保护模式,即一个服务长时间没有发送心跳,Eureka也不会将其删除。自我保护模式默认为开启,可以通过配置参数将其设置为关闭状态。

Eureka服务以集群的方式部署(在博主的另一篇文章中详细介绍了Eureka集群的部署方式),集群内的所有Eureka节点会定时自动同步微服务的注册信息,这样就能保证所有的Eureka服务注册信息保持一致。那么在Eureka集群里,Eureka节点是如何发现其他节点的呢?我们通过DNS服务器来建立所有Eureka节点的关联,在部署Eureka集群之外还需要搭建DNS服务器。

当网关服务转发外部请求或者是后台微服务之间相互调用时,会去Eureka服务器上查找目标服务的注册信息,发现目标服务并进行调用,这样就形成了服务注册与发现的整个流程。Eureka的配置参数数量很多,多达上百个,博主会在另外的文章里详细说明。

微服务部署

微服务是一系列职责单一、细粒度的服务,是将我们的业务进行拆分为独立的服务单元,伸缩性好,耦合度低,不同的微服务可以用不同的语言开发,每一个服务处理的单一的业务。微服务可以划分为前端服务(也叫边缘服务)和后端服务(也叫中间服务),前端服务是对后端服务做必要的聚合和剪裁后暴露给外部不同的设备(PC、Phone等),所有的服务启动时都会到Eureka服务器进行注册,服务之间会有错综复杂的依赖关系。当网关服务转发外部请求调用前端服务时,通过查询服务注册表就可以发现目标服务进行调用,前端服务调用后端服务时也是同样的道理,一次请求可能涉及到多个服务之间的相互调用。由于每个微服务都是以集群的形式部署,服务之间相互调用的时候需要做负载均衡,因此每个服务中都有一个LB组件用来实现负载均衡。

微服务以镜像的形式,运行在Docker容器中。Docker容器技术让我们的服务部署变得简单、高效。传统的部署方式,需要在每台服务器上安装运行环境,如果我们的服务器数量庞大,在每台服务器上安装运行环境将是一项无比繁重的工作,一旦运行环境发生改变,就不得不重新安装,这简直是灾难性的。而使用Docker容器技术,我们只需要将所需的基础镜像(jdk等)和微服务生成一个新的镜像,将这个最终的镜像部署在Docker容器中运行,这种方式简单、高效,能够快速部署服务。每个Docker容器中可以运行多个微服务,Docker容器以集群的方式部署,使用Docker Swarm对这些容器进行管理。我们创建一个镜像仓库用来存放所有的基础镜像以及生成的最终交付镜像,在镜像仓库中对所有镜像进行管理。

服务容错

微服务之间存在错综复杂的依赖关系,一次请求可能会依赖多个后端服务,在实际生产中这些服务可能会产生故障或者延迟,在一个高流量的系统中,一旦某个服务产生延迟,可能会在短时间内耗尽系统资源,将整个系统拖垮,因此一个服务如果不能对其故障进行隔离和容错,这本身就是灾难性的。我们的微服务架构中使用了Hystrix组件来进行容错处理。Hystrix是Netflix的一款开源组件,它通过熔断模式、隔离模式、回退(fallback)和限流等机制对服务进行弹性容错保护,保证系统的稳定性。

1、熔断模式:熔断模式原理类似于电路熔断器,当电路发生短路时,熔断器熔断,保护电路避免遭受灾难性损失。当服务异常或者大量延时,满足熔断条件时服务调用方会主动启动熔断,执行fallback逻辑直接返回,不会继续调用服务进一步拖垮系统。熔断器默认配置服务调用错误率阀值为50%,超过阀值将自动启动熔断模式。服务隔离一段时间以后,熔断器会进入半熔断状态,即允许少量请求进行尝试,如果仍然调用失败,则回到熔断状态,如果调用成功,则关闭熔断模式。

2、隔离模式:Hystrix默认采用线程隔离,不同的服务使用不同的线程池,彼此之间不受影响,当一个服务出现故障耗尽它的线程池资源,其他的服务正常运行不受影响,达到隔离的效果。例如我们通过andThreadPoolKey配置某个服务使用命名为TestThreadPool的线程池,实现与其他命名的线程池隔离。

3、回退(fallback):fallback机制其实是一种服务故障时的容错方式,原理类似Java中的异常处理。只需要继承HystixCommand并重写getFallBack()方法,在此方法中编写处理逻辑,比如可以直接抛异常(快速失败),可以返回空值或缺省值,也可以返回备份数据等。当服务调用出现异常时,会转向执行getFallBack()。有以下几种情况会触发fallback:

1)程序抛出非HystrixBadRequestExcepption异常,当抛出HystrixBadRequestExcepption异常时,调用程序可以捕获异常,没有触发fallback,当抛出其他异常时,会触发fallback;

2)程序运行超时;

3)熔断启动;

4)线程池已满。

4、限流: 限流是指对服务的并发访问量进行限制,设置单位时间内的并发数,超出限制的请求拒绝并fallback,防止后台服务被冲垮。

Hystix使用命令模式HystrixCommand包装依赖调用逻辑,这样相关的调用就自动处于Hystrix的弹性容错保护之下。调用程序需要继承HystrixCommand并将调用逻辑写在run()中,使用execute()(同步阻塞)或queue()(异步非阻塞)来触发执行run()。

动态配置中心

微服务有很多依赖配置,某些配置参数在服务运行期间可能还要动态修改,比如:根据访问流量动态调整熔断阀值。传统的实现信息配置的方法,比如放在xml、yml等配置文件中,和应用一起打包,每次修改都要重新提交代码、打包构建、生成新的镜像、重新启动服务,效率太低,这样显然是不合理的,因此我们需要搭建一个动态配置中心服务支持微服务动态配置。我们使用Spring Cloud的configserver服务帮我们实现动态配置中心的搭建。我们开发的微服务代码都存放在git服务器私有仓库里面,所有需要动态配置的配置文件存放在git服务器下的configserver(配置中心,也是一个微服务)服务中,部署到Docker容器中的微服务从git服务器动态读取配置文件的信息。当本地git仓库修改代码后push到git服务器仓库,git服务端hooks(post-receive,在服务端完成代码更新后会自动调用)自动检测是否有配置文件更新,如果有,git服务端通过消息队列给配置中心(configserver,一个部署在容器中的微服务)发消息,通知配置中心刷新对应的配置文件。这样微服务就能获取到最新的配置文件信息,实现动态配置。

以上这些框架或组件是支撑实施微服务架构的核心,在实际生产中,我们还会用到很多其他的组件,比如日志服务组件、消息服务组件等等,根据业务需要自行选择使用。在我们的微服务架构实施案例中,参考使用了很多Spring Cloud Netflix框架的开源组件,主要包括Zuul(服务网关)、Eureka(服务注册与发现)、Hystrix(服务容错)、Ribbon(客户端负载均衡)等。这些优秀的开源组件,为我们实施微服务架构提供了捷径。

如果想学习Java工程化、高性能及分布式、深入浅出。微服务、Spring,MyBatis,Netty源码分析的朋友可以加我的Java高级交流:854630135,群里有阿里大牛直播讲解技术,以及Java大型互联网技术的视频免费分享给大家。

Docker视频免费下载

1r9g

Docker视频|走进Docker|从Docker到CaaS(一)Docker集群管理介绍|从Docker到CaaS(三)Kubernetes|从Docker到CaaS(六)微服务与CaaS|从Docker到CaaS(二)Docker 容器管理工具|从 Docker 到 CaaS(五)灵雀云部署 Docker 容器|

云服务器系统空间太小,导致docker 容器中日记文件存储占用较多,需要挂载数据盘进行扩容

1扩容磁盘

2将docker 安装文件迁移到扩容的磁盘中

3迁移后需更改原有容器的文件的权限

参考1:

https://blogcsdnnet/jabony/article/details/104667678

https://blogcsdnnet/zzhuan_1/article/details/102953841

参考2: https://blogcsdnnet/tianlangstudio/article/details/112554920

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » Docker安装RabbitMQ并设置用户名密码

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情