联机分析处理的产品介绍,第1张

Hyperion

HyperionEssbaseOLAPServer,在上面有超过100个的应用程序,有300多个用Essbase作为平台的开发商。具有几百个计算公式,支持过程的脚本语言,及统计和基于维的计算。

强大的OLAP查询能力,利用EssbaseQueryDesigner,商业用户可以不用IT人员的帮助自己构件复杂的查询。

广泛的应用支持,可以扩展数据仓库和ERP系统的价值,建立对电子商务、CRM、金融、制造业、零售和CPG(consumerpackagedgoods)等应用的分析程序。

Speed-of-Thought的响应时间,支持多用户同时读写

Web-Enabled的,以服务器为中心的体系结构,支持SMP

强大的合作伙伴提供完整的解决方案,60多个包装好的解决方案,300多个咨询和实施公司。

丰富的前端工具,有30多个前端工具可供选择,其中包括Hyperion自己的WiredforOLAP、Spider-ManWebApplication、Objects、EssbaseSpreadsheetAdd-In、WebGateway、Reporting。

HyperionEnterprise,为跨国公司提供的财务整合、报告和分析的解决方案。有3000多家组织在使用此套系统。

功能丰富:支持多种财务标准USGAAP,CanadianGAAP,UKGAAP,国际会计标准(ISA),FASB,HGB。分公司间交易的自动平帐。FAS52货币转换。FAS94。

易用:可通过Excel,Lotus1-2-3和各种浏览器访问系统。

支持公司结构的调整。

跨国公司的支持:同时支持6种语言及各个不同国家的法律和税收要求。

完整的过程控制和审计跟踪,及安全等级的设置。

能与ERP或其他数据源集成

HyperionPillar,预算和计划工具。全球用户超过1500家,提供基于活动的预算,基于项目的计划,集中式计划,销售预测和综合计划。

分布式体系结构

详细计划的制订:允许一线经理制订详细的计划

复杂的建模和分析能力

Oracle

ExpressServer提供全面的OLAP能力,有全球超过3000家用户

用户可通过Web和电子表格使用

灵活的数据组织方式,数据可以存放在ExpressServer内,也可直接在RDB上使用

有内建的分析函数和4GL来用户自己定制查询

Cognos

PowerPlay,为商务效率评价BPM(BusinessPerformanceMeasurement)提供全面的报告和分析环境。向决策者提供企业运行效率的各种关键数据,进行各种各样的分析。

只用鼠标点击、拖拉就可以浏览多维数据

自动利用Web发布得到的分析报告

支持多种OLAPServer:MicrosoftOLAPServices、HyperionEssbase、SAPBW、IBMOLAPforDB2

完备的授权和安全体系

NovaView,是MicrosoftSQLServer70OLAPServices的客户端应用程序。

MicroStrategy

MicroStrategy7,是新一代的智能平台(IntelligencePlatform)面向电子商务应用e-business和电子客户关系管理eCRM。

具有强大的分析能力

以Web为中心的界面

支持上百万的用户和TB的数据

快速开发能力,可直接利用已有的数据模式

IntelligenceServer,Oneforallanalyticapplications

Microsoft SQLServer70OLAPServices,是SQLServer70的OLAP模块,可以使用任何关系数据库或平面文件作为数据源,其中的PivotTableService提供了客户端的数据缓存和计算能力。

智能的Client/Server数据管理,提高响应速度,降低网络流量

通过OLEDBforOLAP,允许不同的客户端访问

BusinessObjects

BusinessObjects,是易用的BI工具,允许用户存取、分析和共享数据。

可应用多种数据源:RDB,ERP,OLAP,Excel等

可应用VBA和开放式对象模型来进行开发定制

IBM

DB2OLAPServer,是强大的多维分析工具,把HyperionEssbase的OLAP引擎和DB2的关系数据库集成在一起。

与EssbaseAPI完全兼容

数据用星型模型存放在关系数据库DB2中

Brio

BrioEnterprise,是强大的易用的BI工具,提供查询,OLAP分析和报告的能力

支持多种语言,包括中文

BrioReport,强大的企业级报告工具

1、调整数据结构的设计。这一部分在开发信息系统之前完成,程序员需要考虑是否使用ORACLE数据库的分区功能,对于经常访问的数据库表是否需要建立索引等。

2、2、调整应用程序结构设计。这一部分也是在开发信息系统之前完成,程序员在这一步需要考虑应用程序使用什么样的体系结构,是使用传统的Client/Server两层体系结构,还是使用Browser/Web/Database的三层体系结构。不同的应用程序体系结构要求的数据库资源是不同的。

3、3、调整数据库SQL语句。应用程序的执行最终将归结为数据库中的SQL语句执行,因此SQL语句的执行效率最终决定了ORACLE数据库的性能。ORACLE公司推荐使用ORACLE语句优化器(Oracle Optimizer)和行锁管理器(row-level manager)来调整优化SQL语句。

4、4、调整服务器内存分配。内存分配是在信息系统运行过程中优化配置的,数据库管理员可以根据数据库运行状况调整数据库系统全局区(SGA区)的数据缓冲区、日志缓冲区和共享池的大小;还可以调整程序全局区(PGA区)的大小。需要注意的是,SGA区不是越大越好,SGA区过大会占用操作系统使用的内存而引起虚拟内存的页面交换,这样反而会降低系统。

5、5、调整硬盘I/O,这一步是在信息系统开发之前完成的。数据库管理员可以将组成同一个表空间的数据文件放在不同的硬盘上,做到硬盘之间I/O负载均衡。

6、6、调整操作系统参数,例如:运行在UNIX操作系统上的ORACLE数据库,可以调整UNIX数据缓冲池的大小,每个进程所能使用的内存大小等参数。

实际上,上述数据库优化措施之间是相互联系的。ORACLE数据库性能恶化表现基本上都是用户响应时间比较长,需要用户长时间的等待。但性能恶化的原因却是多种多样的,有时是多个因素共同造成了性能恶化的结果,这就需要数据库管理员有比较全面的计算机知识,能够敏感地察觉到影响数据库性能的主要原因所在。另外,良好的数据库管理工具对于优化数据库性能也是很重要的。

ORACLE数据库性能优化工具

数据仓库技术和前景发展现状

----计算机系统的功能从数值计算扩展到数据管理距今已有三十多年了。最初的数据管理形式主要是文件系统,少量的以数据片段之间增加一些关联和语义而构成层次型或网状数据库,但数据的访问必须依赖于特定的程序,数据的存取方式是固定的、死板的。到了1969年,EFCodd博士发表了他著名的关系数据模型的论文。此后,关系数据库的出现开创了数据管理的一个新时代。

----二十多年来,大量新技术、新思路涌现出来并被用于关系数据库系统的开发和实现:客户/服务器体系结构、存储过程、多线索并发内核、异步I/O、代价优化,等等,这一切足以使得关系数据库系统的处理能力毫不逊色于传统封闭的数据库系统。而关系数据库在访问逻辑和应用上所带来的好处则远远不止这些,SQL的使用已成为一个不可阻挡的潮流,加上近些年来计算机硬件的处理能力呈数量级的递增,关系数据库最终成为联机事务处理系统的主宰。整个80年代直到90年代初,联机事务处理一直是数据库应用的主流。然而,应用在不断地进步。当联机事务处理系统应用到一定阶段的时候,企业家们便发现单靠拥有联机事务处理系统已经不足以获得市场竞争的优势,他们需要对其自身业务的运作以及整个市场相关行业的态势进行分析,而做出有利的决策。这种决策需要对大量的业务数据包括历史业务数据进行分析才能得到。在如今这样激烈的市场竞争环境下,这种基于业务数据的决策分析,我们把它称之为联机分析处理,比以往任何时候都显得更为重要。如果说传统联机事务处理强调的是更新数据库--向数据库中添加信息,那么联机分析处理就是从数据库中获取信息、利用信息。因此,著名的数据仓库专家RalphKimball写道:“我们花了二十多年的时间将数据放入数据库,如今是该将它们拿出来的时候了。”

----事实上,将大量的业务数据应用于分析和统计原本是一个非常简单和自然的想法。但在实际的操作中,人们却发现要获得有用的信息并非如想像的那么容易:第一,所有联机事务处理强调的是密集的数据更新处理性能和系统的可靠性,并不关心数据查询的方便与快捷。联机分析和事务处理对系统的要求不同,同一个数据库在理论上都难以做到两全;第二,业务数据往往被存放于分散的异构环境中,不易统一查询访问,而且还有大量的历史数据处于脱机状态,形同虚设;第三,业务数据的模式针对事务处理系统而设计,数据的格式和描述方式并不适合非计算机专业人员进行业务上的分析和统计。因此有人感叹:20年前查询不到数据是因为数据太少了,而今天查询不到数据是因为数据太多了。针对这一问题,人们设想专门为业务的统计分析建立一个数据中心,它的数据从联机的事务处理系统中来、从异构的外部数据源来、从脱机的历史业务数据中来……这个数据中心是一个联机的系统,它是专门为分析统计和决策支持应用服务的,通过它可满足决策支持和联机分析应用所要求的一切。这个数据中心就叫做数据仓库。这个概念在90年代初被提出来,如果需要给数据仓库一个定义的话,那么数据仓库就是一个作为决策支持系统和联机分析应用数据源的结构化数据环境。数据仓库所要研究和解决的问题就是从数据库中获取信息的问题。

----那么数据仓库与数据库(主要指关系数据库)又是什么关系呢?回想当初,人们固守封闭式系统是出于对事务处理的偏爱,人们选择关系数据库是为了方便地获得信息。我们只要翻开CJDate博士的经典之作《AnIntroductiontoDatabaseSystems》便会发现:今天数据仓库所要提供的正是当年关系数据库要所倡导的。然而,“成也萧何、败也萧何”,由于关系数据库系统在联机事务处理应用中获得的巨大成功,使得人们已不知不觉将它划归事务处理的范畴;过多地关注于事务处理能力的提高,使得关系数据库在面对联机分析应用时又显得“老革命遇到新问题”--今天的数据仓库对关系数据库的联机分析能力提出了更高的要求,采用普通关系型数据库作为数据仓库在功能和性能上都是不够的,它们必须有专门的改进。因此,数据仓库与数据库的区别不仅仅表现在应用的方法和目的方面,同时也涉及到产品和配置上的不同。

----以辨证的眼光来看,数据仓库的兴起实际上是数据管理的一种回归,是螺旋式的上升。今天的数据库就好比当年的层次数据库和网型数据库,它们面向事务处理;今天的数据仓库就好比是当年的关系数据库,它针对联机分析。所不同的是,今天的数据仓库不必再为联机事务处理的特性而无谓奔忙,由于技术的专业化,它可更专心于联机分析领域的发展和探索。

----从厂商的角度看,经过长期发展,联机事务处理系统的市场至90年代中期出现饱和迹象,其增长速度明显减慢。这导致各大数据库厂商的传统业务增长面临严峻挑战,寻求新的业务增长点成为他们的当务之急。数据仓库的兴起无疑为数据库产品创造了巨大的市场,它将成为本世纪末到下世纪初数据库市场的一个新的增长点。因此,数据仓库的概念一开始便伴随着浓烈的市场炒作。对于广大用户来说,只有从自身应用需求出发,破除技术和概念的神秘性,避虚就实,密切关注技术发展的方向,方可获得满意的产品、解决方案和经济效益。

----数据仓库的概念一经出现,就首先被应用于金融、电信、保险等主要传统数据处理密集型行业。国外许多大型的数据仓库在1996~1997年建立。那么,什么样的行业最需要和可能建立数据仓库呢?有两个基本条件:第一,该行业有较为成熟的联机事务处理系统,它为数据仓库提供客观条件;第二,该行业面临市场竞争的压力,它为数据仓库的建立提供外在的动力。

数据仓库的关键技术

----那么,数据仓库都有哪些组成部分和关键技术呢?与关系数据库不同,数据仓库并没有严格的数学理论基础,它更偏向于工程。由于数据仓库的这种工程性,因而在技术上可以根据它的工作过程分为:数据的抽取、存储和管理、数据的表现以及数据仓库设计的技术咨询四个方面。在此,我们将分别讨论每一个环节。

----1数据的抽取

----数据的抽取是数据进入仓库的入口。由于数据仓库是一个独立的数据环境,它需要通过抽取过程将数据从联机事务处理系统、外部数据源、脱机的数据存储介质中导入数据仓库。数据抽取在技术上主要涉及互连、复制、增量、转换、调度和监控等几个方面。数据仓库的数据并不要求与联机事务处理系统保持实时的同步,因此数据抽取可以定时进行,但多个抽取操作执行的时间、相互的顺序、成败对数据仓库中信息的有效性则至关重要。

----在技术发展上,数据抽取所涉及的单个技术环节都已相对成熟,其中有一些是躲不开编程的,但整体的集成度还很不够。目前市面上所提供的大多是数据抽取工具。这些工具通过用户选定源数据和目标数据的对应关系,会自动生成数据抽取的代码。但抽取工具支持的数据种类是有限的;同时数据抽取过程涉及数据的转换,它是一个与实际应用密切相关的部分,其复杂性使得不可嵌入用户编程的抽取工具往往不能满足要求。因此,实际的数据仓库实施过程中往往不一定使用抽取工具。整个抽取过程能否因工具的使用而纳入有效的管理、调度和维护则更为重要。从市场发展来看,以数据抽取、异构互连产品为主项的数据仓库厂商一般都很有可能被其他拥有数据库产品的公司吞并。在数据仓库的世界里,它们只能成为辅助的角色。

----2存储和管理

----数据仓库的真正关键是数据的存储和管理。数据仓库的组织管理方式决定了它有别于传统数据库的特性,同时也决定了其对外部数据表现形式。要决定采用什么产品和技术来建立数据仓库核心,则需要从数据仓库的技术特点着手分析。

----数据仓库遇到的第一个问题是对大量数据的存储和管理。这里所涉及的数据量比传统事务处理大得多,且随时间的推移而累积。从现有技术和产品来看,只有关系数据库系统能够担当此任。关系数据库经过近30年的发展,在数据存储和管理方面已经非常成熟,非其他数据管理系统可比。目前不少关系数据库系统已支持数据分割技术,能够将一个大的数据库表分散在多个物理存储设备中,进一步增强了系统管理大数据量的扩展能力。采用关系数据库管理数百个GB甚至到TB的数据已是一件平常的事情。一些厂商还专门考虑大数据量的系统备份问题,好在数据仓库对联机备份的要求并不高。

----数据仓库要解决的第二个问题是并行处理。在传统联机事务处理应用中,用户访问系统的特点是短小而密集;对于一个多处理机系统来说,能够将用户的请求进行均衡分担是关键,这便是并发操作。而在数据仓库系统中,用户访问系统的特点是庞大而稀疏,每一个查询和统计都很复杂,但访问的频率并不是很高。此时系统需要有能力将所有的处理机调动起来为这一个复杂的查询请求服务,将该请求并行处理。因此,并行处理技术在数据仓库中比以往更加重要。大家可以注意一下,在针对数据仓库的TPC-D基准测试中,比以往增加了一个单用户环境的测试,称为“系统功力”(QppD)。系统的并行处理能力对QppD的值有重要影响。目前,关系数据库系统在并行处理方面已能做到对查询语句的分解并行、基于数据分割的并行、以及支持跨平台多处理机的群集环境和MPP环境,能够支持多达上百个处理机的硬件系统并保持性能的扩展能力。

----数据仓库的第三个问题是针对决策支持查询的优化。这个问题主要针对关系数据库而言,因为其他数据管理环境连基本的通用查询能力还不完善。在技术上,针对决策支持的优化涉及数据库系统的索引机制、查询优化器、连接策略、数据排序和采样等诸多部分。普通关系数据库采用B树类的索引,对于性别、年龄、地区等具有大量重复值的字段几乎没有效果。而扩充的关系数据库则引入了位图索引的机制,以二进制位表示字段的状态,将查询过程变为筛选过程,单个计算机的基本操作便可筛选多条记录。由于数据仓库中各数据表的数据量往往极不均匀,普通查询优化器所得出的最佳查询路径可能不是最优的。因此,面向决策支持的关系数据库在查询优化器上也做了改进,同时根据索引的使用特性增加了多重索引扫描的能力。以关系数据库建立的数据仓库在应用时会遇到大量的表间连接操作,而连接操作对于关系数据库来说是一件耗时的事儿。扩充的关系库中对连接操作可以做预先的定义,我们称之为连接索引,使得数据库在执行查询时可直接获取数据而不必实施具体的连接操作。数据仓库的查询常常只需要数据库中的部分记录,如最大的前50家客户,等等。普通关系数据库没有提供这样的查询能力,只好将整个表的记录进行排序,从而耗费了大量的时间。决策支持的关系数据库在此做了改进,提供了这一功能。此外,数据仓库的查询并不需要像事务处理系统那样精确,但在大容量数据环境中需要有足够短的系统相应时间。因此,一些数据库系统增加了采样数据的查询能力,在精确度允许的范围内,大幅度提高系统查询效率。总之,将普通关系数据库改造成适合担当数据仓库的服务器有许多工作可以做,它已成为关系数据库技术的一个重要研究课题和发展方向。可见,对于决策支持的扩充是传统关系数据库进入数据仓库市场的重要技术措施。

----数据仓库的第四个问题是支持多维分析的查询模式,这也是关系数据库在数据仓库领域遇到的最严峻的挑战之一。用户在使用数据仓库时的访问方式与传统关系数据库有很大的不同。对于数据仓库的访问往往不是简单的表和记录的查询,而是基于用户业务的分析模式,即联机分析。如附图所示,它的特点是将数据想像成多维的立方体,用户的查询便相当于在其中的部分维(棱)上施加条件,对立方体进行切片、分割,得到的结果则是数值的矩阵或向量,并将其制成图表或输入数理统计的算法。

----关系数据库本身没有提供这种多维分析的查询功能,而且在数据仓库发展的早期,人们发现采用关系数据库去实现这种多维查询模式非常低效、查询处理的过程也难以自动化。为此,人们提出了多维数据库的概念。多维数据库是一种以多维数据存储形式来组织数据的数据管理系统,它不是关系型数据库,在使用时需要将数据从关系数据库中转载到多维数据库中方可访问。采用多维数据库实现的联机分析应用我们称之为MOLAP。多维数据库在针对小型的多维分析应用有较好的效果,但它缺少关系数据库所拥有的并行处理及大规模数据管理扩展性,因此难以承担大型数据仓库应用。这样的状态直到“星型模式”在关系数据库设计中得到广泛应用才彻底改变。几年前,数据仓库专家们发现,关系数据库若采用“星型模式”来组织数据就能很好地解决多维分析的问题。“星型模式”只不过是数据库设计中数据表之间的一种关联形式,它的巧妙之处在于能够找到一个固定的算法,将用户的多维查询请求转换成针对该数据模式的标准SQL语句,而且该语句是最优化的。“星型模式”的应用为关系数据库在数据仓库领域大开绿灯。采用关系数据库实现的联机分析应用称为ROLAP。目前,大多数厂商提供的数据仓库解决方案都采用ROLAP。

----在数据仓库的数据存储管理领域,从当今的技术发展来看,面向决策支持扩充的并行关系数据库将是数据仓库的核心。在市场上,数据库厂商将成为数据仓库的中坚力量。

----3数据的表现

----数据表现是数据仓库的门面。这是一个工具厂商的天下。它们主要集中在多维分析、数理统计和数据挖掘方面。

----多维分析是数据仓库的重要表现形式,由于MOLAP系统是专用的,因此,关于多维分析领域的工具和产品大多是ROLAP工具。这些产品近两年来更加注重提供基于Web的前端联机分析界面,而不仅仅是网上数据的发布。

----数理统计原本与数据仓库没有直接的联系,但在实际的应用中,客户需要通过对数据的统计来验证他们对某些事物的假设,以进行决策。与数理统计相似,数据挖掘与数据仓库也没有直接联系。而且这个概念在现实中有些含混。数据挖掘强调的不仅仅是验证人们对数据特性的假设,而且它更要主动地寻找并发现蕴藏在数据之中的规律。这听起来虽然很吸引人,但在实现上却有很大的出入。市场上许多数据挖掘工具其实不过是数理统计的应用。它们并不是真正寻找出数据的规律,而是验证尽可能多的假设,其中包括许多毫无意义的组合,最后由人来判断其合理性。因此,在当前的数据仓库应用中,有效地利用数理统计就已经能够获得可观的效益。

----4数据仓库设计的技术咨询

----在数据仓库的实施过程中,有一些更为基本的问题需要解答。它们包括:数据仓库提供哪些部门使用?不同的部门怎样发挥数据仓库的决策效益?数据仓库需要存放哪些数据?这些数据以什么样的结构存放?数据从哪里装载?装载的频率多少为合适?需要购置哪些数据管理的产品和工具来建立数据仓库?等等。这些问题依赖于特定的数据仓库系统,属于技术咨询的范畴。

----事实上,数据仓库绝不是简单的产品堆砌,它是综合性的解决方案和系统工程。在数据仓库的实施过程中,技术咨询服务至关重要,是一个不可缺少的部分,它甚至于比购买产品更为重要。目前,数据仓库的技术咨询主要来自数据仓库软件产品的供应商和独立的针对数据仓库技术的咨询公司。

主流厂商及产品

----作为数据管理市场的热点,近年来有很多公司投入数据仓库市场的角逐。在此,我们将选择介绍其中一部分厂商。首先,它们是为中国市场所熟悉的,其产品能够容易买到。其次,我们主要选择软件厂商。第三,这些厂商分为两大类,一类是拥有数据库产品背景的,它们将是数据仓库市场的中坚力量;另一类是工具产品厂商,提供数据仓库解决方案中的外围工具(在此不多介绍)。

----数据管理类厂商中主要有(字母排序):IBM,Informix,Microsoft,NCR,Oracle,Sybase等。

----■IBM

----作为数据仓库领域中的一支劲旅,IBM是一家同时拥有硬件和软件的厂商。在数据仓库技术领域,IBM最注目的是其SP/2的MPP硬件环境。近年来,它以开放系统管理了大量超过TB容量的数据仓库。由于封闭的主机系统一时难以成为数据仓库中心系统的主流,SP/2等开放的MPP环境必然成为主宰。相比之下,IBM的数据库软件表现平常,其数据仓库核心采用的是DB2UniversalServer(简称UDB)的ParallelEdition。IBM的优势在于业界的声誉、市场份额、硬件系统和咨询服务。

----■Informix

----Informix是一家专业的数据库厂商,其关系数据库服务器DynamicServer在传统联机事务处理应用中始终占据着稳定而广泛的市场份额。近年来,数据仓库成为该公司重要的发展领域之一。在数据仓库技术上,Informix主要关注在这么几个方面:第一,并行处理的数据库服务器。Informix的ExtendedParallelServer(XPS)专为企业级决策支持系统而设计,采用非共享技术支持群集系统和MPP环境,能够提供近线性的性能扩展能力。第二,在并行关系数据库的基础上,Informix增加了针对决策支持操作的扩展。第三,Informix提供了MetaCubeOLAP中间件,以多层客户/服务器结构实现ROLAP解决方案,并在其中集成了基于汇总和采样的查询优化机制。

----1998年底,著名的数据仓库供应商RedBrick并入了Informix,增强了它在数据抽取、数据挖掘以及在行业顾问咨询方面的实力。目前,Informix将数据仓库看成产品和服务的集合,将整体解决方案命名为DecisionFrontier。

----■Microsoft

----微软是以其关系数据库SQLServer作为它数据仓库核心的。在数据仓库领域,微软的计划是将Plato(一个OLAP服务器)和DataTransformationServices(数据转换服务,包括数据抽取、转换和装载能力)作为其SQLServer70数据库的免费组成部分。微软的OLAP走的是ROLAP的路子,与其数据转换一样,属于常规的解决方案;而并行处理和决策支持扩展则不是SQLServer的强项。因此,整个解决方案仍面向中低端,价格取胜是关键。

----为此,微软在数据仓库市场中倡导了另一个概念--数据集市(DataMart)。所谓数据集市就是一个面向部门应用的、小型的数据仓库;所采用的技术与数据仓库相似,但存储的内容更加专题化。对于数据集市这样的规模,微软的解决方案便可成为理想的选择。

----■NCR

----NCR是数据仓库的先驱之一,具有强大的以业务为中心的顾问咨询力量,在传统数据仓库领域有很大的市场。NCR的数据仓库产品名为TeradataScalableWarehouse,取超大规模数据之意,面向高端数据仓库市场。NCR的Teradata并非一个开放的数据库系统,它专为数据仓库领域而设计的。但在有关数据仓库性能的TPC-D测试中,Teradata的表现却很平常,它需要更多的并行处理机。Teradata运行的平台主要是MPP环境,操作系统也是NCR自己的,直到最近才支持Unix和NT。

----NCR是专注于高端数据仓库的厂商,其Teradata在大规模系统和数据量下表现良好。但它的解决方案也面临着挑战:联机多维分析是它的弱项。

----■Oracle

----Oracle公司早先在数据仓库上的研究集中在OLAP多维分析上。数年前,Oracle收购了名为IRI的多维数据库厂商,推出Express多维数据库,以MOLAP模式提供了联机分析的解决方案。随着近年来ROLAP的解决方案渐渐成为主流,在Oracle最新推出的数据仓库解决方案--OracleDataMartSuite中Oracle以Oracle8EnterpriseServer为数据仓库服务器。

----■Sybase

----早在1994年推广System10的时候,Sybase便在数据库的大规模并行联机备份、数据复制、异构数据库互连等方面做了大量工作。在核心领域,Sybase专门为MPP环境设计了NavigationServer,与SQLServer配合构成大规模并行处理环境。1995年初,Sybase通过收购ExpressWay,推出了第一个与大型关系数据库结合的位图索引机制--SybaseIQ。目前,Sybase推出的数据仓库解决方案名叫SybaseWarehouseStudio,其中有通过SybaseIQ加强的AdaptiveServer,以及Power系列的设计、转换、OLAP工具。但在实际的应用解决方案中,由于市场的原因,Sybase往往需要借用第三方的工具。

数据仓库未来发展方向

----数据仓库是数据管理技术和市场上一个方兴未艾的领域,有着良好的发展前景。在此,我们将从技术、应用、市场等几个方面探讨数据仓库的未来发展。

----数据仓库技术的发展自然包括数据抽取、存储管理、数据表现和方法论等方面。在数据抽取方面,未来的技术发展将集中在系统集成化方面。它将互连、转换、复制、调度、监控纳入标准化的统一管理,以适应数据仓库本身或数据源可能的变化,使系统更便于管理和维护。在数据管理方面,未来的发展将使数据库厂商明确推出数据仓库引擎,作为服务器产品与数据库服务器并驾齐驱。在这一方面,带有决策支持扩展的并行关系数据库将最具发展潜力。在数据表现方面,数理统计的算法和功能将普遍集成到联机分析产品中,同时与Internet/Web技术紧密结合,推出适用于Intranet、终端免维护的数据仓库访问前端。在这个方面,按行业应用特征细化的数据仓库用户前端软件将成为产品作为数据仓库解决方案的一部分。数据仓库实现过程的方法论将更加普及,将成为数据库设计的一个明确分支,成为管理信息系统设计的必备。

----计算机应用发展的数据仓库倾向是数据仓库发展的推动力。传统的联机事务处理系统并不单独考虑数据仓库,但实际应用对数据仓库所能提供的功能却早有需求。因此,许多事务处理系统近年来陷入一个两难的境地:在现有系统上增加有限的联机分析功能,包括复杂的报表和数据汇总操作;一方面严重影响了事务处理联机性能,另一方面统计分析又因系统结构上的种种限制而不能充分体现。其结果是:应用技术的发展是朝着更加细化,更加专业的方向。在新一代的应用系统中,数据仓库在一开始便被纳入系统设计的考虑,联机分析应用于普遍的事务处理系统之中。在数据管理上,联机事务处理和数据仓库在应用中相对独立,使联机事务处理系统本身更加简洁高效,同时分析统计也更为便利。面向行业的数理统计学向更为普遍的应用发展,并集成到应用系统的数据仓库解决方案中。它们将立足于数据仓库提供的丰富信息,更好地为业务决策服务。

----在市场上,我们将从厂商和用户两个方面看数据仓库的发展。对于提供数据仓库产品和解决方案的厂商来说,严酷的市场竞争是永恒的主题。未来的发展将是不提供完整解决方案的厂商可能被其他公司收购,例如从事数据抽取、提供专用工具的软件公司很可能并入大型数据库厂商而去构建完整的解决方案。能够持续发展的厂商大致有两类:一是拥有强大的数据库、数据管理背景的公司;二是专门提供面向具体行业的、关于数据仓库实施的技术咨询的公司。

----从用户的角度看,数据管理的传统领域,如金融、保险、电信等行业中的特定应用,如信用分析、风险分析、欺诈检测等,是数据仓库的主要市场之外,数据仓库的应用随着现代社会商业模式的变革而进一步普及和深入。近年来,一场悄悄的革命正在改变产品制造和提供服务的方式,它就是数字化定制经济模式。在这个世界里,用户可以购买一台根据自己要求组装的计算机、一条根据自己体形设计的牛仔裤、一种根据自己身体需要而生产的保健药、一副与自己脸型相配的眼镜……,大规模的定制不仅是一种制造过程、后勤系统、或者推销策略,它很可能成为下一世纪企业生产的组织原则,就像成批生产是本世纪的组织原则一样。在未来大规模定制经济环境下,数据仓库将成为企业获得竞争优势的关键武器。

----总之,数据仓库是一项基于数据管理和利用的综合性技术和解决方案,它将成为数据库市场的新一轮增长点,同时也成为下一代应用系统的重要组成部分。数据仓库对于广大计算机用户,包括中国用户,并不遥远;它看得见、摸得着、买得到。数据仓库技术其实也不神秘,至少比绝大多数统计学定理来得简单。相信大家必能在数据仓库的实施和使用中获得满意的效果。

excel2007中如何隐藏制作图表引用的源数据数据而不影响图表?谢谢!

处理Excel 2007数据透视表源数据和数据透视图源数据

在创建Excel 2007数据透视表 (数据透视表:一种交互的、交叉制表的 Excel 报表,用于对多种来源(包括 Excel 2007的外部数据)的数据(如数据库记录)进行汇总和分析。)或数据透视图 (数据透视图:提供交互式数据分析的图表,与数据透视表类似。可以更改数据的视图,查看不同级别的明细数据,或通过拖动字段和显示或隐藏字段中的项来重新组织图表的布局。)时,可使用多种源数据 (源数据:用于创建数据透视表或数据透视图的数据清单或表。源数据可以来自 Excel 数据清单或区域、外部数据库或多维数据集,或者另一张数据透视表。)类型。

使用工作表数据

可以将 Microsoft Office Excel 2007工作表中的数据作为报表的数据来源。数据应为列表 (列表:包含相关数据的一系列行,或使用“创建列表”命令作为数据表指定给函数的一系列行。)格式,第一行包含列标签,其余行包含相同列中的类似项,并且数据区域中没有空白的行或列。Excel 将列标签作为报表的字段 (字段:在数据透视表或数据透视图中,来源于源数据中字段的一类数据。数据透视表具有行字段、列字段、页字段和数据字段。数据透视图具有系列字段、分类字段、页字段和数据字段。)名称。

使用命名区域 若要使报表的更新更易于进行,请为源区域命名一个名称 (名称:代表单元格、单元格区域、公式或常量值的单词或字符串。名称更易于理解,例如,“产品”可以引用难于理解的区域“Sales!C20:C30”。),并在创建报表时使用该名称。如果命名区域在扩展后包含了更多数据,则可以刷新 (刷新:更新数据透视表或数据透视图中的内容以反映基本源数据的变化。如果报表基于外部数据,则刷新将运行基本查询以检索新的或更改过的数据。)报表来包含新的数据。

Excel 表格 Excel 2007表格已经采用列表格式,因而是数据透视表源数据很好的候选者。当刷新数据透视表时,Excel 表格中的新的和更新的数据会自动包含在刷新操作中。

包含汇总 Excel 2007会在数据透视表中自动创建分类汇总和总计。如果源数据包含用“数据”选项卡上的“大纲”组中的“分类汇总”命令创建的自动分类汇总和总计,则可在创建报表前用该命令将分类汇总和总计删除。

使用外部数据源

要汇总和分析 Excel 的外部数据(如数据库中公司的销售记录),则可从包括数据库 (数据库:与特定主题或用途相关的数据的 。在数据库内,关于特定实体的信息(如雇员或订单)分类归纳到表、记录和字段中。)、OLAP 多维数据集和文本文件的外部数据源上检索数据。

Office 数据连接文件 如果使用 Office 数据连接 (ODC) 文件 (odc) 检索报表的外部数据 (外部数据:存储在 Excel 之外的数据。例如,在 Aess、dBASE、SQL Server 或 Web 服务器上创建的数据库。),则可直接将数据返回到数据透视表。ODC 文件是检索报表的外部数据的推荐方法。

OLAP 源数据 如果要检索 OLAP (OLAP:为查询和报表(而不是处理事务)而进行了优化的数据库技术。OLAP 数据是按分级结构组织的,它存储在多维数据集而不是表中。) 数据库或多维数据集 (多维数据集:一种 OLAP 数据结构。多维数据集包含维度,如“国家/地区)/省(或市/自治区)/市(或县)”,还包括数据字段,如“销售额”。维度将各种类型的数据组织到带有明细数据级别的分层结构中,而数据字段度量数量。)文件中的源数据,则数据只能作为数据透视表或已转换为工作表函数的数据透视表返回到 Excel。

非 OLAP 源数据 这是数据透视表或数据透视图使用的基本数据,该数据来自 OLAP 数据库之外的源。这些源包括关系数据库和文本文件。

使用其他数据透视表

数据透视表缓存 每次在新建数据透视表或数据透视图时,Excel 均将报表数据的副本存储在内存中,并将其保存为工作簿文件的一部分。这样每张新的报表均需要额外的内存和磁盘空间。但是,如果将现有数据透视表作为同一个 工作簿中的新报表的源数据,则两张报表就可以共享同一个数据副本。因为可以重新使用存储区,所以就会缩小工作簿文件,减少内存中的数据。

位置要求 如果要将某个数据透视表用作其他报表的源数据,则两个报表必须位于同一工作簿中。如果源数据透视表位于另一工作簿中,则需要将源报表复制到要新建报表的工作簿位置。不同工作簿中的数据透视表和数据透视图是独立的,它们在内存和工作簿文件中都有各自的数据副本。

更改会同时影响两个报表 在刷新 (刷新:更新数据透视表或数据透视图中的内容以反映基本源数据的变化。如果报表基于外部数据,则刷新将运行基本查询以检索新的或更改过的数据。)新报表中的数据时,Excel 也会更新源报表中的数据,反之亦然。如果对某个报表中的项进行分组或取消分组,那么也将同时影响两个报表。如果在某个报表中创建了计算字段 (计算字段:数据透视表或数据透视图中的字段,该字段使用用户创建的公式。计算字段可使用数据透视表或数据透视图中其他字段中的内容执行计算。)或计算项 (计算项:数据透视表字段或数据透视图字段中的项,该项使用用户创建的公式。计算项使用数据透视表或数据透视图中相同字段的其他项的内容进行计算。),则也将同时影响两个报表。

Excel 2007数据透视图 可根据其他的数据透视表创建新的数据透视表或数据透视图,但是不能直接根据其他数据透视图创建报表。不过,在创建数据透视图时,Excel 会根据同样的数据创建一个相关联的数据透视表 (相关联的数据透视表:为数据透视图提供源数据的数据透视表。在新建数据透视图时,将自动创建数据透视表。如果更改其中一个报表的布局,另外一个报表也随之更改。),因此可根据相关联的报表创建一个新的报表。对数据透视图的更改将影响相关联的数据透视表,反之亦然。

更改现有报表的源数据

更改源数据 (源数据:用于创建数据透视表或数据透视图的数据清单或表。源数据可以来自 Excel 数据清单或区域、外部数据库或多维数据集,或者另一张数据透视表。)将导致用于分析的数据也发生变化。例如,您可能希望方便地从测试数据库切换到生产数据库。可以通过刷新 (刷新:更新数据透视表或数据透视图中的内容以反映基本源数据的变化。如果报表基于外部数据,则刷新将运行基本查询以检索新的或更改过的数据。)报表,使用与原始数据连接信息类似的新数据来更新数据透视表或数据透视图。

要包含附加数据或其他数据,可以重新定义报表的源数据。如果这些数据与多数新字段或附加字段有很大差异,那么最好创建一个新的报表。

通过刷新显示新数据 刷新报表也会更改可显示的数据。对于基于工作表列表的报表,Excel 可在源区域或指定的名称 (名称:代表单元格、单元格区域、公式或常量值的单词或字符串。名称更易于理解,例如,“产品”可以引用难于理解的区域“Sales!C20:C30”。)区域中检索新字段。对于基于外部数据的报表,Excel 可检索符合基本查询 (查询:在 Query 或 Aess 中,查询是一种查找记录的方法,而这些记录回答了用户对数据库中存储的数据提出的特定问题。)条件的新数据或可在 OLAP 多维数据集 (多维数据集:一种 OLAP 数据结构。多维数据集包含维度,如“国家/地区)/省(或市/自治区)/市(或县)”,还包括数据字段,如“销售额”。维度将各种类型的数据组织到带有明细数据级别的分层结构中,而数据字段度量数量。)中使用的数据。可在“字段列表”中查看任意新字段并将这些字段添加到报表中。

更改创建的 OLAP 多维数据集 基于 OLAP 数据的报表始终可以访问多维数据集中的所有数据。如果在服务器多维数据集中创建了一个包含数据子集的脱机多维数据集文件 (脱机多维数据集文件:创建于硬盘或网络共享位置上的文件,用于存储数据透视表或数据透视图的 OLAP 源数据。脱机多维数据集文件允许用户在断开与 OLAP 服务器的连接后继续进行操作。),则可用“脱机 OLAP”命令来编辑多维数据集文件,这样它就会包含服务器的其他数据。

Excel如何移动源数据而不影响图表?

用绝对引用 在引用公式中B2改为$B$2按照这样的前面加$

EXCEL2007制作图表,数据输入后图表出来的不对

把数字后面的“人”去了。

后面加人字,单元格值被认为是文本,不是数值,所以没有值

在excel2007中图表的源数据变化后图表会不会变化

因为图表中的数据来源于源数据

所以只要源数据发生变化,图表就会跟着变化

excel如何根据数据制作图表

excle的插入里面,可根据数据做图表,柱状图、饼型图等等。

如何使用excel2007制作图表

制作啥图表啊

选中数据区域,插入,图表,选择需要的图表即可啊

如何在excel2007以温度计形式制作数据图表

选中该列

在开始中的 条件格式 选择 数据条或者 色阶

如果不喜欢,可以自定义规则

excel2007怎么制作图表

点菜单插入--图表--标准类型:选择一种图表,下一步,选择数据区域,完成

方法/步骤

新建工作表,建立自己的工作表格

在菜单栏选择插入柱形图

效果如下,点击图上的空白区域右键单击—选择数据

出来如下效果图,点击下图右边的红色箭头

将鼠标选中你已经制作好的表格

继续点击红色箭头点击确定,出来如下图标

如果在制作表格的时候忘记写数字,可以补全,我的年龄一栏刚才没写,这次可以协商,表格自动效果出来了,大家看看

如何在Excel2007中修改图表的数据源

这个是一定要懂得,这是网络编程的基本,就好像所有知识的基础,基本上所有的网络程序都是在这两个协议上搭建起来的,hxhack。 所以一定要学,可能学的时候会无聊,但是尽量学完。

简写为OLAP,随着数据库技术的发展和应用,数据库存储的数据量从20世纪80年代的兆(M)字节及千兆(G)字节过渡到现在的兆兆(T)字节和千兆兆(P)字节,同时,用户的查询需求也越来越复杂,涉及的已不仅是查询或操纵一张关系表中的一条或几条记录,而且要对多张表中千万条记录的数据进行数据分析和信息综合,关系数据库系统已不能全部满足这一要求。在国外,不少软件厂商采取了发展其前端产品来弥补关系数据库管理系统支持的不足,力图统一分散的公共应用逻辑,在短时间内响应非数据处理专业人员的复杂查询要求。

联机分析处理(OLAP)系统是数据仓库系统最主要的应用,专门设计用于支持复杂的分析操作,侧重对决策人员和高层管理人员的决策支持,可以根据分析人员的要求快速、灵活地进行大数据量的复杂查询处理,并且以一种直观而易懂的形式将查询结果提供给决策人员,以便他们准确掌握企业(公司)的经营状况,了解对象的需求,制定正确的方

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » 联机分析处理的产品介绍

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情