GPU服务器哪几个厂商比较知名?

GPU服务器哪几个厂商比较知名?,第1张

深度学习GPU服务器是科学计算服务器的一种,科学计算服务器主要用于科学研究,是高性能计算机的一种,介于一般服务器与超级计算机之间。目前,科学计算服务器大约占整个服务器市场的5%左右,风虎云龙是目前所知国内专注于科学计算高性能服务器的厂商品牌,多年来一直紧跟科学发展,密切关注人工智能、机器学习、深度学习发展,结合科研发展需要研发生产高性能科学计算服务器,提供专业的售前、售中和售后服务,以及高性能计算集群的安装、调试、优化、培训、维护等技术支持和服务。

上海风虎信息作为深度学习服务器的专业厂商,专注为科研院所和高校师生打造高性能服务器,建议您选择深度学习服务器时需要注意以下几点:

1深度学习需要大量的并行计算资源,而且动辄计算几天甚至数周,而英伟达NVIDIA、英特尔Intel、AMD显卡(GPU)恰好适合这种工作,提供几十上百倍的加速,性能强劲的GPU能在几个小时内完成原本CPU需要数月完成的任务,所以目前深度学习乃至于机器学习领域已经全面转向GPU架构,使用GPU完成训练任务。

2如今即使使用GPU的深度学习服务器也要持续数天乃至数月(取决于数据规模和深度学习网络模型),需要使用单独的设备保障,保证训练任务能够小时长期稳定运行。

3独立的深度学习工作站(服务器)可以方便实现实验室计算资源共享,多用户可以在个人电脑编写程序,远程访问到深度学习服务器上排队使用计算资源,减少购买设备的开支并且避免了在本地计算机配置复杂的软件环境。

上海风虎信息专注于深度学习GPU服务器开发,根据TensorFlow,Pytorch,Caffe,Keras,Theano等软件计算特征,向您推荐入门级、中级、顶级GPU服务器典型配置,欢迎查阅,谢谢。

拥有高性能计算领域优秀的专业工程师团队,具有 10 年以上高性能计算 行业技术支持经验,提供专业的售前、售中和售后服务,以及高性能计算集群的安装、调 试、优化、培训、维护等技术支持和服务。在深度学习、量化计算、分子动力学、生物信 息学、雷达信号处理、地震数据处理、光学自适应、转码解码、医学成像、图像处理、密 码破解、数值分析、计算流体力学、计算机辅助设计等多个科研领域积累了深厚的技术功 底,和熟练的技术支持能力。提供 Caffe, TensorFlow, Abinit, Amber, Gromacs, Lammps, NAMD, VMD, Materials Studio, Wien2K, Gaussian, Vasp, CFX, OpenFOAM, Abaqus, Ansys, LS-DYNA, Maple, Matlab, Blast, FFTW, Nastran 等软件的安装、调 试、优化、培训、维护等技术支持和服务。

选择GPU服务器时首先要考虑业务需求来选择适合的GPU型号。在HPC高性能计算中还需要根据精度来选择,比如有的高性能计算需要双精度,这时如果使用P40或者P4就不合适,只能使用V100或者P100;同时也会对显存容量有要求,比如石油或石化勘探类的计算应用对显存要求比较高;还有些对总线标准有要求,因此选择GPU型号要先看业务需求。

GPU服务器人工智能领域的应用也比较多。在教学场景中,对GPU虚拟化的要求比较高。根据课堂人数,一个老师可能需要将GPU服务器虚拟出30甚至60个虚拟GPU,因此批量Training对GPU要求比较高,通常用V100做GPU的训练。模型训练完之后需要进行推理,因此推理一般会使用P4或者T4,少部分情况也会用V100。

综上所述,选择服务器时不仅需要考虑业务需求,还要考虑性能指标,比如精度、显存类型、显存容量以及功耗等,同时也会有一些服务器是需要水冷、降噪或者对温度、移动性等等方面有特殊的要求,就需要特殊定制的服务器。

欢迎了解更多:网页链接

中兴R6500 G5 GPU服务器产品最大支持20个单宽GPU卡或10个双宽GPU卡,能够根据不同的应用场景灵活调度各种不同的异构算力资源,从而实现算力的最佳组合,如CPU+GPU、CPU+GPU+DPU,可满足AI、超算等多样性算力场景需求。

GPU服务器属于异构计算服务器,将并行计算负载放到协处理器上来。推荐的话,那首选一定是英伟达GPU服务器,或者选择英伟达授权的官方代 理商也是可以的。国内英伟达代 理商还是比较多的,思腾合力就是其中之一,有兴趣的话你可以去了解一下。思腾合力是英伟达精英级的合作伙伴,在原厂技术资源、GPU技术上都有多年的技术积累,还是非常不错的。

GPU服务器的主要应用场景有海量计算处理,超强的计算功能可应用与海量数据处理方面的运算,如搜索、大数据推荐、智能输入法等,可能原本需要几天才能完成的数据量,用GPU服务器在几个小时就完成了;GPU服务器还可以作为深度学习训练平台,可直接加速计算服务,亦可直接与外界连接通信等等。思腾合力在GPU服务器的型号方面还是有很多选择的,有自主研发的品牌也有英伟达的,在选择方面还是比较多的,应用的场景也十分广泛。

这个问题,对许多做AI的人来说,应该很重要。因为,显卡这么贵,都自购,显然不可能。

但是,回答量好少。而且最好的回答,竟然是讲amazonaws的,这对国内用户,有多大意义呢?

我来接地气的回答吧。简单一句话:我们有万能的淘宝啊!

说到GPU租用的选择。阿里、腾讯、华为、滴滴等,大公司云平台,高大上。但是,第一,非常昂贵。很多不提供按小时租用,动不动就是包月。几千大洋撒出去,还是心疼的。第二,遇到codingbug,你找谁去问呢,大厂的售后可不会看代码。第三,看配套。大厂的云服务,适用面广,很难为ai做特殊优化。别看ai炒的热,其实市场还小众的很。

国内外现在有几家专门做算力租赁的,vectorDash,vastai,易学智能,等。

比如,易学智能,国内厂家,GPU便宜、按小时租,并且预装了各种环境-Tensorflow、Pytorch、MXNet、Caffe等都有,还有很多公开数据集可免费用。服务没得说,技术小哥连bug都帮你找,我当时用着,真是上帝感觉。vectordash与vast,出身名门(斯坦福硅谷)。他们的价格,比大厂都要优惠很多。

最后,重复一遍结论:到淘宝,搜gpu租用,跟店家交流一下、再试用1-2小时,你就知道,好东西在哪里了。

服务器gpu授权是启用GPU计算加速功能所需要的许可证。根据查询相关公开信息显示:部署深度学习模型或进行其他需要大量计算资源的任务时,使用GPU可以显著提高计算效率,缩短任务执行时间。但是,使用GPU计算功能可能会增加服务器的负载和能耗,因此需要授权来管理和限制GPU的使用,GPU授权通常是由GPU厂商或服务器提供商提供的许可证,可以通过订阅或购买来获取。授权的类型和价格通常取决于授权的数量和时间长度,并且可能受到供应和需求的影响。

选择最好的GPU服务器需要考虑以下因素:

GPU性能:GPU性能是选择GPU服务器的最重要因素。你需要找到具有最新GPU芯片和高性能的服务器,这将直接影响计算速度和任务处理时间。例如,NVIDIA Tesla V100和A100 GPU都是目前最强大的GPU芯片。

内存容量:GPU服务器的内存容量越大,可以处理的数据就越多,从而提高处理效率。如果你的任务需要处理大量数据,那么选择内存容量较大的服务器是非常重要的。

存储容量和类型:选择具有足够存储空间和高速存储设备(如SSD)的服务器,这对于大数据量的处理和存储非常重要。此外,考虑存储设备的类型,例如NVMe SSD比SATA SSD更快,但成本更高。

网络连接速度:GPU服务器需要与你的本地计算机或其他服务器进行通信,因此网络连接速度也很重要。选择具有高速网络接口卡(NIC)的服务器,并考虑网络传输速度和延迟。

价格:选择适合你预算的GPU服务器。价格取决于服务器的配置、性能和品牌等因素。选择具有良好性价比的服务器,以便在预算范围内获得最佳性能。

品牌和技术支持:选择知名品牌的GPU服务器可以获得更好的技术支持和保障。特别是如果你是初学者,选择品牌信誉良好的服务器可能更加可靠。

最后,你应该选择最适合你的任务需求的GPU服务器,不仅要考虑服务器的性能,还要考虑价格、品牌和支持等因素。

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » GPU服务器哪几个厂商比较知名?

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情