webrtc服务器需要多少带宽
1, 发端带宽控制, 原理是由rtcp中的丢包统计来动态的增加或减少带宽,在减少带宽时使用TFRC算法来增加平滑度。
2, 收端带宽估算, 原理是并由收到rtp数据,估出带宽; 用卡尔曼滤波,对每一帧的发送时间和接收时间进行分析, 从而得出网络带宽利用情况,修正估出的带宽。
两种算法相辅相成, 收端将估算的带宽发送给发端, 发端结合收到的带宽以及丢包率,调整发送的带宽。
下面具体分析两种算法:
2, 接收端带宽估算算法分析
结合文档http://toolsietforg/html/draft-alvestrand-rtcweb-congestion-02以及源码webrtc/modules/remote_bitrate_estimator/overuse_detectorcc进行分析
带宽估算模型: d(i) = dL(i) / c + w(i) d(i)两帧数据的网络传输时间差,dL(i)两帧数据的大小差, c为网络传输能力, w(i)是我们关注的重点, 它主要由三个因素决定:发送速率, 网络路由能力, 以及网络传输能力。w(i)符合高斯分布, 有如下结论:当w(i)增加是,占用过多带宽(over-using);当w(i)减少时,占用较少带宽(under-using);为0时,用到恰好的带宽。所以,只要我们能计算出w(i),即能判断目前的网络使用情况,从而增加或减少发送的速率。
算法原理:即应用kalman-filters
theta_hat(i) = [1/C_hat(i) m_hat(i)]^T // i时间点的状态由C, m共同表示,theta_hat(i)即此时的估算值
z(i) = d(i) - h_bar(i)^T theta_hat(i-1) //d(i)为测试值,可以很容易计算出, 后面的可以认为是d(i-1)的估算值, 因此z(i)就是d(i)的偏差,即residual
theta_hat(i) = theta_hat(i-1) + z(i) k_bar(i) //好了,这个就是我们要的结果,关键是k值的选取,下面两个公式即是取k值的,具体推导见后继博文。
E(i-1) h_bar(i)
k_bar(i) = --------------------------------------------
var_v_hat + h_bar(i)^T E(i-1) h_bar(i)
E(i) = (I - K_bar(i) h_bar(i)^T) E(i-1) + Q(i) // h_bar(i)由帧的数据包大小算出
由此可见,我们只需要知道当前帧的长度,发送时间,接收时间以及前一帧的状态,就可以计算出网络使用情况。
接下来具体看一下代码:
[cpp] view
plaincopy
void OveruseDetector::UpdateKalman(int64_t t_delta,
double ts_delta,
uint32_t frame_size,
uint32_t prev_frame_size) {
const double min_frame_period = UpdateMinFramePeriod(ts_delta);
const double drift = CurrentDrift();
// Compensate for drift
const double t_ts_delta = t_delta - ts_delta / drift; //即d(i)
double fs_delta = static_cast<double>(frame_size) - prev_frame_size;
// Update the Kalman filter
const double scale_factor = min_frame_period / (10000 / 300);
E_[0][0] += process_noise_[0] scale_factor;
E_[1][1] += process_noise_[1] scale_factor;
if ((hypothesis_ == kBwOverusing && offset_ < prev_offset_) ||
(hypothesis_ == kBwUnderusing && offset_ > prev_offset_)) {
E_[1][1] += 10 process_noise_[1] scale_factor;
}
const double h[2] = {fs_delta, 10}; //即h_bar
const double Eh[2] = {E_[0][0]h[0] + E_[0][1]h[1],
E_[1][0]h[0] + E_[1][1]h[1]};
const double residual = t_ts_delta - slope_h[0] - offset_; //即z(i), slope为1/C
const bool stable_state =
(BWE_MIN(num_of_deltas_, 60) fabsf(offset_) < threshold_);
// We try to filter out very late frames For instance periodic key
// frames doesn't fit the Gaussian model well
if (fabsf(residual) < 3 sqrt(var_noise_)) {
UpdateNoiseEstimate(residual, min_frame_period, stable_state);
} else {
UpdateNoiseEstimate(3 sqrt(var_noise_), min_frame_period, stable_state);
}
const double denom = var_noise_ + h[0]Eh[0] + h[1]Eh[1];
const double K[2] = {Eh[0] / denom,
Eh[1] / denom}; //即k_bar
const double IKh[2][2] = {{10 - K[0]h[0], -K[0]h[1]},
{-K[1]h[0], 10 - K[1]h[1]}};
const double e00 = E_[0][0];
const double e01 = E_[0][1];
// Update state
E_[0][0] = e00 IKh[0][0] + E_[1][0] IKh[0][1];
E_[0][1] = e01 IKh[0][0] + E_[1][1] IKh[0][1];
E_[1][0] = e00 IKh[1][0] + E_[1][0] IKh[1][1];
E_[1][1] = e01 IKh[1][0] + E_[1][1] IKh[1][1];
// Covariance matrix, must be positive semi-definite
assert(E_[0][0] + E_[1][1] >= 0 &&
E_[0][0] E_[1][1] - E_[0][1] E_[1][0] >= 0 &&
E_[0][0] >= 0);
slope_ = slope_ + K[0] residual; //1/C
prev_offset_ = offset_;
offset_ = offset_ + K[1] residual; //theta_hat(i)
Detect(ts_delta);
}
[cpp] view
plaincopy
BandwidthUsage OveruseDetector::Detect(double ts_delta) {
if (num_of_deltas_ < 2) {
return kBwNormal;
}
const double T = BWE_MIN(num_of_deltas_, 60) offset_; //即gamma_1
if (fabsf(T) > threshold_) {
if (offset_ > 0) {
if (time_over_using_ == -1) {
// Initialize the timer Assume that we've been
// over-using half of the time since the previous
// sample
time_over_using_ = ts_delta / 2;
} else {
// Increment timer
time_over_using_ += ts_delta;
}
over_use_counter_++;
if (time_over_using_ > kOverUsingTimeThreshold //kOverUsingTimeThreshold是gamma_2, gamama_3=1
&& over_use_counter_ > 1) {
if (offset_ >= prev_offset_) {
time_over_using_ = 0;
over_use_counter_ = 0;
hypothesis_ = kBwOverusing;
}
}
} else {
time_over_using_ = -1;
over_use_counter_ = 0;
hypothesis_ = kBwUnderusing;
}
} else {
time_over_using_ = -1;
over_use_counter_ = 0;
hypothesis_ = kBwNormal;
}
return hypothesis_;
}
如果是普通企业网站足够用,如果是视频、音乐、、下载这样耗带宽的站是远远不够。
参考公式:支持连接个人 = 服务器带宽/页面尺寸大小
通过计算大致结果是,2Mbps的带宽(服务器的2M带宽最快上下速度能达到2M/s,跟我们家用的带宽稍有区别)支持的连接数为:17个。因此,N M带宽可以支持的同时在线人数大概为N17个。
所以,2M带宽的云服务器,日均3000IP以下应该没问题。当然如果每个页面都比较大的话,那就没这么多了。
扩展资料:
云服务器必要的功能
云服务器更具有安全性。因为云服务器具有防ARP攻击和MAC欺骗功能,云服务器可进行快照备份,云服务器保证数据永久不丢失。而且云服务器比传统的物理服务器更加可靠,因为云服务器是基于服务器集群的,因此云服务器具有较高的硬件冗余,云服务器能大大降低故障发生率。
云服务器还具有故障自动迁移功能,如果一台云服务器出现故障,云服务器上面的应用会自动迁移到其他云服务器上面,云服务器从而保证业务能够正常运行。
云服务器能实现快照备份,当主机出现故障时,云服务器能够一键恢复故障前的所有数据
0条评论