数据中心是什么?其系统结构和工作原理是怎样的呢?

数据中心是什么?其系统结构和工作原理是怎样的呢?,第1张

数据中心是企业的业务系统与数据资源进行集中、集成、共享、分析的场地、工具、流程等的有机组合。从应用层面看,包括业务系统、基于数据仓库的分析系统;从数据层面看,包括操作型数据和分析型数据以及数据与数据的集成/整合流程;从基础设施层面看,包括服务器、网络、存储和整体IT

运行维护服务。

数据中心的建设目标是:1、全面建成公司总部和网省公司两级数据中心,逐步实现数据及业务系统的集中;

2、建立企业数据仓库,提供丰富的数据分析展现功能;3、实现数据的唯一性与共享性;4、建立统一的安全体系,保证数据及业务系统的访问安全;5、结合数据中心建设,完善数据交换体系,实现两级数据中心间的级联;6、实现网络、硬件、存储设备、数据、业务系统和管理流程、IT采购流程、数据交换流程的统一集中;7、统一的信息管理模式及统一的技术架构,能够迅速地实施部署各种IT系统,提升管理能力。

数据中心采用总部和网省两级进行部署,两级数据中心通过数据交换平台进行数据的级联。

数据中心逻辑架构包含:应用架构、数据架构、执行架构、基础架构(物理架构)、安全架构、运维架构。

应用架构:应用架构是指数据中心所支撑的所有应用系统部署和它们之间的关系。

数据架构:数据架构是指每个应用系统模块的数据构成、相互关系和存储方式,还包括数据标准和数据的管控手段等。

执行架构:执行架构是指数据仓库在运行时态的关键功能及服务流程,主要包括ETL(数据的获取与整合)架构和数据访问架构。

基础架构(物理架构):为上层的应用系统提供硬件支撑的平台(主要包括服务器、网络、存储等硬件设施)。

安全架构:安全架构覆盖数据中心各个部分,包括运维、应用、数据、基础设施等。它是指提供系统软硬件方面整体安全性的所有服务和技术工具的总和。

运维架构:运维架构面向企业的信息系统管理人员,为整个信息系统搭建一个统一的管理平台,并提供相关的管理维护工具,如系统管理平台、数据备份工具和相关的管理流程。

数据的获取与整合也叫ETL(Extract,Transact,Load),是在确定好数据集市模型并对数据源进行分析后,按照分析结果,从应用系统中抽取出与主题相关的原始业务数据,按照数据中心各存储部件的要求,进行数据交换和装载。数据的获取与整合主要分为数据抽取、数据转换、数据装载三个步骤。

ETL

的好坏,直接影响到数据集市中的数据质量。

数据仓库区是专门针对企业数据整合和数据历史存储需求而组织的集中化、一体化的数据存储区域。数据仓库由覆盖多个主题域的企业信息组成,这些信息主要是低级别、细粒度数据,同时可以根据数据分析需求建立一定粒度的汇总数据。它们按照一定频率定期更新,主要用于为数据集市提供整合后的、高质量的数据。数据仓库侧重于数据的存储和整合。

数据集市是一组特定的、针对某个主题域、部门或用户分类的数据集合。这些数据需要针对用户的快速访问和数据输出进行优化,优化的方式可以通过对数据结构进行汇总和索引实现。借助数据集市可以保障数据仓库的高可用性、可扩展性和高性能

       巴可视讯(Bakevision)网络视频流媒体转发网关是基于开放式、大融合、全兼容、标准化的设计架构理念,依据《安全防范视频监控联网系统信息传输、交换、控制技术要求》(GB/T 28181-2011)标准开发,集流媒体转发、视频编码、视频管理、标准通信协议、网络穿透等核心技术于一体,实现视频编码、流媒体转发、标准协议转换、数据流媒体等多系统技术跨越融合,可基于 GB/T 28181-2011 联网标准实现视频监控平台间的级联、互联,解决视频系统联网中视频信息的独立、分散、孤岛问题,实现将不同系统、不同厂家、不同类型、不同编码的视频信息统一标准、互联互通和信息共享,同时可以实现多流媒体转发网关分布式、集群、级联部署,实现冗余热备和云计算管理。

1产品性能:工业级的硬件设计,高性能处理器,搭配大容量运行内存及实时操作系统,适应各种场所、恶劣环境应用。

2视频采集:通过IP网络接入前端视频设备或系统,可将各种模拟、数字、标清、高清等独立、分散系统的视频信息进行统一标准的集中采集、管理和控制,可以同时接入和管理DVR、NVR、IPCAM、视频系统平台等。

3视频兼容:支持20家以上知名视频厂商私有SDK协议、HTTP协议 、GB/T28181标准协议、ONVIF标准协议、RTSP标准协议、RTMP标准协议的视频设备和系统接入。

4视频转换:可对接入的标准或非标准视频进行编码转换,转换为H264或 H265标准的视频,可自定义多种码流格式,如:1080、720、VGA、D1、CIF等,自定义码流大小,如4M、2M、500K等,自定义帧率,1-25帧可调,以适应不同网络带宽传输。

5视频转发:可将接入网关的不同厂商视频数据流通过网络单播/多播转发给控制中心、客户端、WEB浏览等,实现大规模并发访问,支持5种可自定义视频格式、码流、帧率的输出,传输协议同时支持GB/T28181标准和RTMP标准协议。

6协议转换:可对接入的标准或非标准设备协议进行协议转换为 GB/T28181标准和RTMP标准协议输出,以满足第三方信息化管理系统的调用和联网。

7通信规约:符合《公共安全视频监控联网系统信息传输、交换、控制技术要求》 (GB28181标准)和RTMP协议传输标准。

8 平台接入:支持同时多个异构平台的接入和级联,支持以GB/T28181标准和RTMP标准实现对接上级平台,以私有SDK协议、 HTTP 、GB/T28181标准、ONVIF标准、RTSP标准、RTMP标准接入下级平台。

9集中管理:统一标准的视频集中管理,将各种模拟、数字、标清、高清等独立的、分散的视频信息系统进行集中管理、监视和控制,可以同时接入和管理DVR、NVR、IPCAM、视频平台等。

10安全认证:对视频接入的设备进行身份认证,禁止未经认证的设备接入,对使用网关视频的用户进行身份认证,采用用户名口令方式作为授权用户的凭证,对使用网关视频的用户进行权限控制与管理。

1解决系统不同类型、不同厂商、不同标准的视频信息的统一接入管理、转发、兼容和共享。

2.独特的流媒体转发技术实现将不同厂商视频图像数据流通过网络单播/多播转发给控制中心、客户端、WEB浏览、数字解码矩阵、集中存储服务器、移动互联网终端(如手机,平板等),解决有限的带宽下实现大规模并发访问。

3多任务视频编码模块,实现至少支持5种自定义视频压缩码流输出,同时支持H264、H265标准编码和自定义非标加密编码,每种视频压缩码流输出可自定义传输标准,同时支持GB/T28181标准和RTMP标准输出。

4将接入网关的所有非标或标准视频统一标准管理,可以同时接入和管理DVR、NVR、IPCAM等,将各种互不相关的模拟、数字、标清、高清等独立的、分散的系统进行集中管理、转发和控制。

5将所有非标或标准视频数据以及通讯数据进行转换、编码,统一为符合国际SIP标准和国家GB/T28181标准,支持GB/T28181和RTMP标准协议同时输出,方便任意系统视频组网和应用,同时支持H264、H265视频编码算法标准。

(1 )产品目标

1.解决视频联网系统中任何私有协议视频管理系统的视频信息兼容和共享。

2.解决任何私有协议视频管理系统转换为满足GB/T28181标准的视频管理系统。

3.解决任何私有协议视频管理系统的信息分散、孤岛问题,实现统一的标准联网管理。

4.利用多码流技术和独有的网络穿透技术解决视频联网系统中一切网络穿透和网络带宽问题。

(2 )产品适应性

1.兼容国内外H264、MPEG-4、M-JPEG 和MxPEG等标准算法设备,如:海康、大华、天地伟业、汉邦高科、金三立、大立、朗驰欣创、景阳、亚安、恒亿、英飞拓、安讯士、MOBOTIX、奇偶、VIVOTEK、PIXORD、KingTon、三星、波粒、博世等等多个主流设备厂商的媒体流转码。

2.支持对非国标平台的标准化改造,输出标准信令与标准码流。

3.可提供开放的二次开发接口,第三方非国标平台采用联网网关可实现标准升级。

(3 )产品适用场景

网络视频流媒体转发网关接入设备数量、类型、标准不受限制,实现将非标系统转换为标准GB28181国标系统和RTMP标准协议传输,可以根据不同应用场景灵活配置、组网应用,可广泛使用于网络视频大型联网系统、智能视频监控报警系统、智能交通管理系统、环境监测监控报警系统和常规安防报警系统等非标系统转换为GB28181标准和RTMP标准系统实现标准联网应用,适应各行各业不同规模的音视频联网系统应用。

(4 ) 应用 架构示意图

1.工业级的硬件设计,适应各种场所、恶劣环境应用。

2.支持穿越网闸或安全接入平台,实现在内网接入外网资源,实现主动注册和信息数据上传。

3.采用中间件技术,模块化组件设计,具有高度的灵活性。

4.支持H264/H265视频编码算法。

5.支持视频会议会商和信息发布,自适应网络带宽。

6.实现不同视频厂家设备完成无缝接入,将视频信息从私网转至专用网络。

7.集成音视频数据、传感器数据采集、视频、数据转发、视频会议终端、信息发布终端、视频编解码于一体。

8.支持模拟量传感器数据接入和开关量传感器信号接入。

9. 支持门禁系统数据、消防报警系统数、道闸、停车场系统数据、环境监控数据以及第三方监控管理平台数据的整合接入。

10.支持HDMI或者VGA异步输出,本地显示输出有效分辨率高达19201080@60fps。

11.具备双千兆RJ45网卡接口,支持异步网络接入。

12.具备RS232、RS485串口,可连接多个传感器实现自动数据采集。

13.具备USB接口,方便数据的导出。

1.独特的流媒体转发技术:流媒体转发实现将不同厂商视频图像数据流通过网络单播/多播转发给控制中心、客户端、WEB浏览、数字解码矩阵、集中存储服务器、移动互联网终端(如手机,平板等),解决有限的带宽下多个用户并发访问同一个监控点或者视频会议点问题,实现大规模并发访问,具备带宽管理和分配。

2.内嵌独特的视频会议终端模块:独创视频会议编解码模块,实现强大的视频会议会商功能,实现安防信息数据采集监控的同时具有视频会议会商互动和文字、、视频等信息发布功能。

3.统一标准的集中管理:实现所有非标或标准视频、数据的网络化和统一管理,可以同时接入和管理各种视频设备、报警系统等,实现功能强大的集中监控管理,将各种互不相关的模拟、数字、标清、高清、环控等独立的、分散的系统进行集中采集管理、监视和控制。

一直想整理一下这块内容,既然是漫谈,就想起什么说什么吧。我一直是在互联网行业,就以互联网行业来说。

先大概列一下互联网行业数据仓库、数据平台的用途:

整合公司所有业务数据,建立统一的数据中心;

提供各种报表,有给高层的,有给各个业务的;

为网站运营提供运营上的数据支持,就是通过数据,让运营及时了解网站和产品的运营效果;

为各个业务提供线上或线下的数据支持,成为公司统一的数据交换与提供平台;

分析用户行为数据,通过数据挖掘来降低投入成本,提高投入效果;比如广告定向精准投放、用户个性化推荐等;

开发数据产品,直接或间接为公司盈利;

建设开放数据平台,开放公司数据;

。。。。。。

上面列出的内容看上去和传统行业数据仓库用途差不多,并且都要求数据仓库/数据平台有很好的稳定性、可靠性;但在互联网行业,除了数据量大之外,越来越多的业务要求时效性,甚至很多是要求实时的 ,另外,互联网行业的业务变化非常快,不可能像传统行业一样,可以使用自顶向下的方法建立数据仓库,一劳永逸,它要求新的业务很快能融入数据仓库中来,老的下线的业务,能很方便的从现有的数据仓库中下线;

其实,互联网行业的数据仓库就是所谓的敏捷数据仓库,不但要求能快速的响应数据,也要求能快速的响应业务;

建设敏捷数据仓库,除了对架构技术上的要求之外,还有一个很重要的方面,就是数据建模,如果一上来就想着建立一套能兼容所有数据和业务的数据模型,那就又回到传统数据仓库的建设上了,很难满足对业务变化的快速响应。应对这种情况,一般是先将核心的持久化的业务进行深度建模(比如:基于网站日志建立的网站统计分析模型和用户浏览轨迹模型;基于公司核心用户数据建立的用户模型),其它的业务一般都采用维度+宽表的方式来建立数据模型。这块是后话。

整体架构下面的图是我们目前使用的数据平台架构图,其实大多公司应该都差不多:

逻辑上,一般都有数据采集层、数据存储与分析层、数据共享层、数据应用层。可能叫法有所不同,本质上的角色都大同小异。

我们从下往上看:

数据采集数据采集层的任务就是把数据从各种数据源中采集和存储到数据存储上,期间有可能会做一些简单的清洗。

数据源的种类比较多:

网站日志:

作为互联网行业,网站日志占的份额最大,网站日志存储在多台网站日志服务器上,

一般是在每台网站日志服务器上部署flume agent,实时的收集网站日志并存储到HDFS上;

业务数据库:

业务数据库的种类也是多种多样,有Mysql、Oracle、SqlServer等,这时候,我们迫切的需要一种能从各种数据库中将数据同步到HDFS上的工具,Sqoop是一种,但是Sqoop太过繁重,而且不管数据量大小,都需要启动MapReduce来执行,而且需要Hadoop集群的每台机器都能访问业务数据库;应对此场景,淘宝开源的DataX,是一个很好的解决方案(可参考文章 《异构数据源海量数据交换工具-Taobao DataX 下载和使用》),有资源的话,可以基于DataX之上做二次开发,就能非常好的解决,我们目前使用的DataHub也是。

当然,Flume通过配置与开发,也可以实时的从数据库中同步数据到HDFS。

来自于Ftp/Http的数据源:

有可能一些合作伙伴提供的数据,需要通过Ftp/Http等定时获取,DataX也可以满足该需求;

其他数据源:

比如一些手工录入的数据,只需要提供一个接口或小程序,即可完成;

数据存储与分析毋庸置疑,HDFS是大数据环境下数据仓库/数据平台最完美的数据存储解决方案。

离线数据分析与计算,也就是对实时性要求不高的部分,在我看来,Hive还是首当其冲的选择,丰富的数据类型、内置函数;压缩比非常高的ORC文件存储格式;非常方便的SQL支持,使得Hive在基于结构化数据上的统计分析远远比MapReduce要高效的多,一句SQL可以完成的需求,开发MR可能需要上百行代码;

当然,使用Hadoop框架自然而然也提供了MapReduce接口,如果真的很乐意开发Java,或者对SQL不熟,那么也可以使用MapReduce来做分析与计算;Spark是这两年非常火的,经过实践,它的性能的确比MapReduce要好很多,而且和Hive、Yarn结合的越来越好,因此,必须支持使用Spark和SparkSQL来做分析和计算。因为已经有Hadoop Yarn,使用Spark其实是非常容易的,不用单独部署Spark集群,关于Spark On Yarn的相关文章,可参考:《Spark On Yarn系列文章》

实时计算部分,后面单独说。

数据共享这里的数据共享,其实指的是前面数据分析与计算后的结果存放的地方,其实就是关系型数据库和NOSQL数据库;

前面使用Hive、MR、Spark、SparkSQL分析和计算的结果,还是在HDFS上,但大多业务和应用不可能直接从HDFS上获取数据,那么就需要一个数据共享的地方,使得各业务和产品能方便的获取数据; 和数据采集层到HDFS刚好相反,这里需要一个从HDFS将数据同步至其他目标数据源的工具,同样,DataX也可以满足。

另外,一些实时计算的结果数据可能由实时计算模块直接写入数据共享。

数据应用

业务产品

业务产品所使用的数据,已经存在于数据共享层,他们直接从数据共享层访问即可;

报表

同业务产品,报表所使用的数据,一般也是已经统计汇总好的,存放于数据共享层;

即席查询

即席查询的用户有很多,有可能是数据开发人员、网站和产品运营人员、数据分析人员、甚至是部门老大,他们都有即席查询数据的需求;

这种即席查询通常是现有的报表和数据共享层的数据并不能满足他们的需求,需要从数据存储层直接查询。

即席查询一般是通过SQL完成,最大的难度在于响应速度上,使用Hive有点慢,目前我的解决方案是SparkSQL,它的响应速度较Hive快很多,而且能很好的与Hive兼容。

当然,你也可以使用Impala,如果不在乎平台中再多一个框架的话。

OLAP

目前,很多的OLAP工具不能很好的支持从HDFS上直接获取数据,都是通过将需要的数据同步到关系型数据库中做OLAP,但如果数据量巨大的话,关系型数据库显然不行;

这时候,需要做相应的开发,从HDFS或者HBase中获取数据,完成OLAP的功能;

比如:根据用户在界面上选择的不定的维度和指标,通过开发接口,从HBase中获取数据来展示。

其它数据接口

这种接口有通用的,有定制的。比如:一个从Redis中获取用户属性的接口是通用的,所有的业务都可以调用这个接口来获取用户属性。

实时计算现在业务对数据仓库实时性的需求越来越多,比如:实时的了解网站的整体流量;实时的获取一个广告的曝光和点击;在海量数据下,依靠传统数据库和传统实现方法基本完成不了,需要的是一种分布式的、高吞吐量的、延时低的、高可靠的实时计算框架;Storm在这块是比较成熟了,但我选择Spark Streaming,原因很简单,不想多引入一个框架到平台中,另外,Spark Streaming比Storm延时性高那么一点点,那对于我们的需要可以忽略。

我们目前使用Spark Streaming实现了实时的网站流量统计、实时的广告效果统计两块功能。

做法也很简单,由Flume在前端日志服务器上收集网站日志和广告日志,实时的发送给Spark Streaming,由Spark Streaming完成统计,将数据存储至Redis,业务通过访问Redis实时获取。

任务调度与监控在数据仓库/数据平台中,有各种各样非常多的程序和任务,比如:数据采集任务、数据同步任务、数据分析任务等;

这些任务除了定时调度,还存在非常复杂的任务依赖关系,比如:数据分析任务必须等相应的数据采集任务完成后才能开始;数据同步任务需要等数据分析任务完成后才能开始; 这就需要一个非常完善的任务调度与监控系统,它作为数据仓库/数据平台的中枢,负责调度和监控所有任务的分配与运行。

前面有写过文章,《大数据平台中的任务调度与监控》,这里不再累赘。

总结在我看来架构并不是技术越多越新越好,而是在可以满足需求的情况下,越简单越稳定越好。目前在我们的数据平台中,开发更多的是关注业务,而不是技术,他们把业务和需求搞清楚了,基本上只需要做简单的SQL开发,然后配置到调度系统就可以了,如果任务异常,会收到告警。这样,可以使更多的资源专注于业务之上。

KVM,是Keyboard Video Mouse的缩写,KVM 通过直接连接键盘、视频或鼠标 (KVM) 端口,能够访问和控制计算机。KVM 技术无需目标服务器修改软件。这就意味着可以在BIOS环境下,随时访问目标计算机。KVM 提供真正的主板级别访问,并支持多平台服务器和串行设备。

主要呢是用于控制及访问HDMI矩阵,一般通过串口协议对接即可!

具体方法就比较复杂,有需要具体操作的,可以追问,或者百度搜索“老向聊矩阵”免费视频供您学习

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » 数据中心是什么?其系统结构和工作原理是怎样的呢?

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情