nginx能扛得住5万并发,那更大呢,怎么办
在高并发连接的情况下,Nginx是Apache服务器不错的替代品。Nginx同时也可以作为7层负载均衡服务器来使用。测试结果,Nginx
0714 + PHP 526 (FastCGI) 可以承受3万以上的并发连接数,相当于同等环境下Apache的10倍。
根据经验,4GB内存的服务器+Apache(prefork模式)一般只能处理3000个并发连接,因为它们将占用3GB以上的内存,还得为系统预留1GB的内存。我曾经就有两台Apache服务器,因为在配置文件中设置的MaxClients为4000,当Apache并发连接数达到3800时,导致服务器内存和Swap空间用满而崩溃。
而这台
Nginx 0714 + PHP 526 (FastCGI)
服务器在3万并发连接下,开启的10个Nginx进程消耗150M内存(15M10=150M),开启的64个php-cgi进程消耗1280M内存(20M64=1280M),加上系统自身消耗的内存,总共消耗不到2GB内存。如果服务器内存较小,完全可以只开启25个php-cgi进程,这样php-cgi消耗的总内存数才500M。
在3万并发连接下,访问Nginx 0714 + PHP 526 (FastCGI) 服务器的PHP程序,仍然速度飞快。
你说的5万可以实现 最高能达到10万并发 但是有一个问题你的服务器配置要跟得上才可以玩要不然弄到那个并发数也没啥意义
摘要: 在由云栖社区和阿里云网络团队联合主办的2017阿里云网络技术在线高峰论坛上,阿里云技术专家添毅分享了网络产品部根据客户和阿里云运维的反馈提炼出的几大最主要和最常见的在使用SLB产品中发生的问题,并为大家介绍了针对这些常见问题的相应处理方法。
摘要: 在由云栖社区和阿里云网络团队联合主办的2017阿里云网络技术在线高峰论坛上,阿里云技术专家添毅分享了网络产品部根据客户和阿里云运维的反馈提炼出的几大最主要和最常见的在使用SLB产品中发生的问题,并为大家介绍了针对这些常见问题的相应处理方法。想知道如何借助SLB构建高可用系统以及健康检查是如何实现的,本文不容错过!
本文内容根据演讲嘉宾分享视频以及PPT整理而成。
本次的分享将会主要围绕以下5个部分
基本概念回顾
如何构建高可用系统
选择性能共享型还是性能保障型实例
为什么健康检查异常
为什么负载不均衡
一、基本概念回顾
SLB是什么
SLB是阿里云推出的一款云负载均衡服务,其主要针对于多台云服务器进行流量分发,能够将业务流量分发到由多台云服务器所组成的后端服务器池上去,以此来提升系统的处理能力。负载均衡所解决的问题主要包括两点:第一点,SLB能够消除系统的单点故障,这是因为SLB的后面是由多台云服务器组成的服务器池,那么当其中某一台服务器出现故障的时候并不会影响整个系统的可服务性。第二点,由于后端的云服务器能够横向地进行扩展,所以也具有为海量业务提供服务的能力。那么,为什么要使用云上的负载均衡呢?这是因为云上负载均衡主要有这样的几个特点:高可靠、高性能、低成本、安全性、易用性。
SLB基本组件
阿里云的SLB主要包括了三个基本组件,这里也进行简单地介绍。第一个基本组件就是实例,每个实例都唯一地标识了云负载均衡器,并且每个实例都对应一个VIP,VIP唯一地标识了负载均衡实例,也是负载均衡对外提供服务的地址。第二个组件是监听,监听是由VIP+端口号来唯一标识的,一个监听中包含用户定制的负载均衡策略和转发规则。最后一个基本组件就是后端挂载的服务器,也就是云服务器ECS,负责处理真正的业务请求。
二、如何构建高可用系统
多层次的高可用
如下图所示,阿里云的负载均衡是从四个层面上去构建高可用的。从底层往上层看,分别是应用级别的高可用、集群级别的高可用、可用区级别(AZ)的高可用以及地域级别(Region)的高可用。
应用级别的高可用主要是通过针对SLB后端的ECS实例的健康检查来实现的。当SLB发现后端不健康的或者不能正常工作的ECS的时候,会将这些不健康的ECS从SLB的转发路径中剔除掉,保证业务流量能够转发到正常的工作服务器当中。集群级别的高可用主要是通过集群中LVS机器间的session同步来保障任何一个用户的业务会话都能够在所有的LVS机器上是相互同步的,当其中某一台LVS出现故障时,可以由其他的LVS来接替出现故障的机器的工作。同时,由于会话保持的存在,用户的业务是不会发生中断的。对于可用区级别的高可用和地域级别的高可用,在本文的后面会进行更加详细的介绍。
细说可用区级别容灾
这里详细地介绍一下可用区级别的容灾。可用区级别容灾的设计初衷是在当一个可用区出现重大灾情的时候,比如整个可用区的机房发生了掉电、光缆出现了中断、整个可用区机房中所有的物理机都无法正常工作的时候,也就是整个可用区都宕掉了的情况下,能够由备可用区来继续提供服务,这就是可用区级别容灾的设计初衷。可用区级别的容灾并不是说某一个可用区中的某一个实例或者是某几个实例出现了故障就会发生可用区的切换,实例自动从可用区A切换到可用区B,这是一个比较常见的误区。而针对于这样的误区,阿里云也建议用户在构建可用区级别的高可用的时候采取以下两个步骤:
首先,建议用户在SLB实例的后端尽可能地去挂载多个可用区的ECS实例。SLB能够支持跨可用区地挂载ECS云服务器,这样可以避免某个可用区的ECS都出现故障的情况下,还有其他可用区的ECS能够接替工作,虽然跨可用区挂在ECS会存在大约2毫秒左右的延迟,但是却能够大大地提升服务的可用性。
第二步就是针对于一些特别重要的业务,建议在不同的可用区分别地去购买SLB的实例。比如在可用区A和可用区B各自购买一个SLB实例,在此基础之上再使用全球负载均衡GSLB来进行实例间的调度。
跨地域容灾的实现
跨地域容灾这一部分与上面介绍的可用区级别容灾的第二步非常相似,也是借助于GSLB产品实现的,GSLB即 智能DNS实现了针对于后端的健康检查、路由调度的优化功能,能够实现在地域之间的负载均衡实例的调度。关于这部分的更详细的内容请参考:全球负载均衡跨地域容灾解决方案(https://promotionaliyuncom/ntms/act/globalslbhtml)。
三、选择性能共享型还是性能保障型实例
共享型vs保障型-WHY保障型
在如今这个共享经济的时代,像滴滴打车这样的模式是非常火的。但是即便是有了滴滴打车,但是还有人会去买车,这是因为会出现如下两个大家可能曾经都碰到过的场景:
早晚高峰叫不到车?雨雪天气路边冻成狗?还大幅提价?
假期想远离尘嚣,找个僻静旷野放空自我,叫个滴滴?也许有去,但保证无回!
所以说共享和保障都是客户的需求。出于对于类似需求的考虑,阿里云的负载均衡也推出了性能保障型实例。以前所推出的SLB共享型实例是因为性能指标没有办法实现隔离,因为所有的共享型实例都处于同一个大共享资源池中,所以在高峰期的时候就会出现资源的争抢,这样就无法满足对于性能具有刚性需求的大客户的诉求。除此之外,还有一些体量特别大的超级用户,他们对于性能的要求会是非常高的,但是由于共享型实例无法做到性能隔离,也支持不了大颗粒度的性能指标,所以也无法完成这样的工作。因此,阿里云推出了性能保障型的负载均衡实例。
超强性能
保障型实例的性能规格如上图所示,其并发连接数最大可以达到500万,每秒的新建链接数(CPS)可以达到50万,针对于七层负载均衡系统的QPS可以达到10万。除此之外,性能保障型实例还具有以下的特点:
超强HTTPS性能。 性能保障型实例针对于七层系统,特别是HTTPS的业务进行了优化,实现了高性能硬加解卡,并且能够实现使HTTPS的业务单实例可达10万QPS。
超大并发连接数。 性能保障型实例的单实例的并发连接数可达500万,所以其可承载物联网场景的下海量连接,可以支撑共享自行车、智能手表等存在特别大量长连接的场景。
共享型实例平滑升级。 原有的共享型实例可以平滑升级至性能保障型实例,而无需更换VIP。
完善的业务监控系统。 在推出性能保障型实例之后,因为每个实例都有相应的性能规格和性能指标,所以阿里云也为用户提供了完整的业务指标监控系统,并支持电话、短信、钉钉企业群等方式的告警。
性能规格
上图所展现的是阿里云SLB性能保障型实例的规格参数。图中的最后两行规格7、8默认在控制台上是无法购买的,目前只针对企业级用户,而且需通过客户经理申请后,通过白名单开放。
如何选择规格
对于保障型实例而言,主要有如下几个性能指标:
最大连接数:一个实例可承载的最大连接数。
新建连接数:CPS表示一个实例每秒可以新建的链接数。
每秒查询数:QPS表示一个实例7层的像HTTP或者HTTPS系统的吞吐量。
通常一个4层SLB的性能好坏由最大连接数和新建连接数来衡量,它们表示了一个SLB系统的并发能力和处理突发连接的能力。通常一个7层SLB的性能好坏主要由QPS决定,QPS表示了一个7层系统的吞吐量。这里需要注意的是QPS是7层独有概念。虽然每个规格都定义了三个性能指标,但是这并不代表这三个性能指标在任何一个性能场景下或者任何一个时刻都能够同时达到最大值,这里存在一个性能指标的短木板原则。比如在某一个应用系统中,QPS已经达到指标上限,但最大连接数还远远没有达到上限,这时不论怎样加大客户端数量,最大连接数都会因为QPS达到上限,而无法达到最大值。
对于规格的选择而言,需要通过之前提到的业务监控系统来获取相关指标。如果用户十分了解自己业务的相关指标,也就是对于高峰期的并发连接数会达到多少以及QPS会达到多少都有非常清晰的了解,也可以直接在控制台上选购。但是如果用户并不清楚自己的相关业务指标,可以在初期选购按量付费的较高规格的实例,并且在一个业务周期内监控流量的峰值,在峰值确定好之后再通过变配的方式改变到比较合适的实例规格。目前性能保障型实例还处于公测阶段,所以现在还没有对于实例收取规格费用,也就是说在这个阶段无论用户选择最小规格还是最大规格,实际上都只需要花费IP配置费和带宽费就可以了,这样也比较便于用户去熟悉和使用阿里云的性能保障型实例。
监控和告警
前面也有所提及,在负载均衡的控制台上面能够直接地显示出相应的一些性能指标,但是在这里只能够实现对于性能指标的监控,却无法进行告警。如果用户需要进行监控告警,可以在阿里云所提供的云监控控制台进行操作。云监控平台可以监控阿里云中的所有产品并且实现业务告警的定制,并且可以选择包括短信邮件、电话、企业钉钉群等方式进行业务的实时告警。
四、为什么健康检查异常
健康检查机制
接下来分享在负载均衡的日常使用中出现的问题,特别是很多用户都存在疑问的健康检查部分的问题。
阿里云的负载均衡一共可以支持四种协议,四层的负载均衡系统主要包括了TCP、HTTP以及UDP协议,而七层的系统则包括了HTTP和HTTPS,而由于目前HTTP和HTTPS都是使用的普通的HTTP方式,所以其实也可以归结为三类协议。对于TCP而言,健康检查的过程是通过发送ACK这种TCP的探测报文去探测端口是否仍然存活;对于HTTP而言,则主要使用的是HEAD的请求方式来检查目标的页面是否正常;UDP部分则主要借鉴了SMP协议的原理。
健康检查部分主要会涉及到几个指标,这些指标需要用户在控制台上进行设置,上图中给出了一些默认的建议值,比如响应的超时时间,也就是在每一次进行健康检查的时候,如果超过一定时间健康检查还没有回应就认为这次的健康检查是失败的;还有健康检查间隔,也就是两次健康检查之间通常需要间隔2秒钟;而所谓的不健康阀值和健康阀值就是在网络环境中往往会由于网络的抖动以及其他的因素导致偶尔的一次健康检查失败了,但是这时候并不能认为服务是真的失败了,所以需要设置一个阀值,比如3次就指的是当3次健康检查都失败的时候才会认为后端的服务是存在问题的,然后将其从转发路径中摘除掉。同样的,当服务从不健康变为健康的时候,也需要进行连续的几次探测,当确定处于稳定的健康状态之后再将其加入到SLB的后端中去。
为啥会失败(TCP)
TCP的健康检查也经常会出现一些失败的情况,这里也为大家提供了简单的故障排查顺序供参考。当出现健康检查失败的时候,首先可以检查一下后端的服务器是否已经启动。如果后端服务器的负载是比较高的,也可能会因为没有CPU时间去处理健检查的回应,这样就有可能导致健康检查失败。除此之外,因为对于阿里云的负载均衡而言,健康检查使用的都是私网地址实现的,所以如果根本没有监听到私网地址或者私网地址本身存在故障也会导致健康检查的失败。还有服务器上可能存在防火墙,将监听端口屏蔽掉了,导致健康检查并未通过。此外还可能存在一些配置方面的问题,比如提供服务的端口和做健康检查的端口不一致也可能存在健康检查失败。
针对于TCP的健康检查而言,很多用户会经常看到自己的后端服务器上日志上面有很多10或者16这些网段的访问,并且访问流量还比较大,这是因为之前所提到的健康检查具有一定的间隔时间,比如2秒或者3秒一次。这时候一些用户可能就会认为健康检查会影响服务器的性能,占了很多的服务器的连接数。其实可以从上图中左侧的报文交互情况看到,当SLB对于云服务器发起健康检查的时候首先会发一个SYN的请求,如果服务器端口是存活的,那么它会回应一个ACK,这个时候SLB端就会紧接着发送RST报文。也就是说实际上连接是并没有建立的,所以也不会占用后端服务器的连接数的资源,并且对于性能的影响也是极为有限的。
为啥会失败(HTTP)
HTTP常见的健康检查失败原因大概会有这样的三点:最常见的情况就是有些用户把服务器的HEAD请求方式禁掉了,因为默认在使用浏览器或者手机等请求一个页面的时候使用的都是GET方式,有时候可能需要上传数据则会使用POST方式,虽然很多服务器都支持HEAD请求方式,但是有些服务器可能会处于安全或者其他复杂因素的考虑将HEAD请求禁掉。所以在这里建议客户将服务器的HEAD请求方式打开,因为阿里云负载均衡七层健康检查方案就是使用的HEAD方案。另外一种常见情况就是页面访问本身上就存在问题,这样的情况下健康检查也是无法通过的。最后一种常见情况就是期望结果配置错误,针对于七层的健康检查是通过使用HEAD请求方式去请求页面,页面返回码可能会是200、300或者400以及500等,用户可以在健康检查的配置中设定预期的正常情况下的返回码值,当健康检查返回码值与预期值不一致就会判定健康检查是失败的。
为啥会失败(UDP)
这里介绍一下UDP健康检查的原理。首先,健康检查通过SLB向后端发送UDP报文探测来获取状态信息。SLB会周期性地给后端ECS发送UDP报文,如果UDP端口的业务处于正常情况,则没有任何回应。而当服务出现问题,比如指定的UDP服务端口处于不可达的情况或者无服务的状态的时候,会回复ICMP的不可达报文。这里也会存在一个问题就是如果后端服务器已经变成了网络中的孤岛,比如出现了整个服务器的掉电、关机情况这样完全不能工作的状态,这时候的ICMP不可达报文是永远不可能收到的,因为后端的服务器无法收到SLB发来的UDP探测报文,那么在这种情况下,可能会出现误认为后端健康的情况,但是实际上这个服务可能已经宕掉了。为了应对这种情况,健康检查还提供用户自定义UDP应答报文来实现精确的UDP健康检查,也就是由用户自定义指定一个字符串,当后端的云服务器收到UDP健康检查的探测的时候,也回应指定的字符串,之后SLB对于这个字符串进行对比和校验,如果匹配成功则认为服务一定是健康的,这样就可以实现非常精确的健康检查。
而UDP的健康检查失败也有很多原因,比如在协议栈里面有可能会有ICMP限速保护。当频率达到一定速率的时候,ICMP会被协议栈限制,后端无法回应ICMP不可达报文,进而导致SLB收不到ICMP的报文,出现健康检查的失败情况。所以这部分是需要注意的,如果可能尽量将速率限制放大一些。
其他问题
健康检查时好时坏的可能原因如下:
HTTP类型健康检查目标URI响应慢。比如本身是动态页面,会涉及到大量的计算才能够渲染完成并返回到前端,这样肯定就会导致健康检查响应比较慢。如果服务器负载过高同样也会出现这样的问题。
未全部放开对SLB健康检查源地址的限制导致分布式健康检查失败。因为阿里云的服务器都是分布式的部署,健康检查也会是分布式的探测,LVS等机器在后端有不同的源去针对某一个云服务器进行探测的,所以如果没有将这些源地址都放开,实际上也会影响健康检查的效率,因为对于这么多机器而言,只要有一台机器检测到是正常的那么就是正常的。
还可能出现直接访问正常,但是健康检查失败的情况。造成这样情况的可能原因如下:
防火墙限制。
目的端口不一致。
检查方法不同,可能使用浏览器看页面是没问题的,但是健康检查却不行,这就是因为刚才所提到的HEAD方法没有开启。或者七层的健康检查配置了URL按照域名转发,但是在浏览器上直接访问则是使用域名去做的,而健康检查是使用IP地址做的,这样也可能出现转发和预期结果的不同。
检查频率不同,ICMP限速。
五、为什么负载不均衡
调度算法与会话保持
首先介绍一下负载均衡的调度算法。阿里云的负载均衡支持三种算法,第一种算法是单纯的轮询(RR),也就是将业务的请求依次地分发到后端的服务器。第二种算法是加权轮询(WRR),也就是在处理调度的时候会根据针对于每一台后端服务器设置权重来进行转发。这里之所以设置权重是因为后端服务器的处理能力可能是不同的,如果使用相同的权重进行轮询可能就会把后端处理能力比较弱的服务器挤爆,所以需要针对于服务器的处理能力设置一些权重。第三种算法是针对于加权最小连接数的轮询(WLC),也就是除了根据每台后端服务器设定的权重值来进行轮询,同时还考虑后端服务器的实际负载,也就是连接数。当权重值相同时,当前连接数越小的后端服务器被轮询到的次数也越高,这样就能够保证负载尽量地均衡。如果不考虑这一点就会造成某些服务器连接数已经很高了但是流量依然还往上面分发,而另外一些服务器却一直处于空闲状态。
会话保持指的是来自同一用户请求始终保持分发到同一台后端的云服务器上。对于同一用户而言,使用的是四层的负载均衡和使用七层的负载均衡在理解上是不一样的。如果是四层负载均衡,则会使用源IP地址标识同一用户,所以如果在可能会有很多办公电脑的大型企业中,这些电脑在企业内部是通过局域网的IP进行通信的,在访问公网的时候都是通过NAT网关处理的,所以在走到Internet的时候,源地址通常会是一个或者很有限的几个。在这种情况下,如果是四层的负载均衡就会把里面所有的请求都视为来自同一个用户的,这种情况下如果开启了会话保持,就会发生问题。而七层的负载均衡是根据用户浏览器中的Cookie来进行唯一识别的,对于刚才的案例在大型企业里面因为内网访问公网的源地址都是一样的,导致没有办法识别到底是不是同一个用户,此时建议使用七层的负载均衡方案解决,因为Cookie是每个浏览器都唯一的。会话的保持时间是可以在控制台上配置的,四层的负载均衡方案最大可达1小时,而七层的方案最大可达24小时。
为何不均衡
最后分享一下不均衡的常见情况。有时候会需要新加一个服务器进来,这时候往往到新加进来的服务器上的连接会很少,这是因为可能会存在以下原因:
存在会话保持的情况下,会话保持会让请求停留在原有的服务器上,这样到新加进来的服务器上的连接自然会少一些。
权重设置不一致,如果在权重的设置上存在区别,而新加进来的服务器的权重如果很低,连接也过不去。
应用属于长连接类型,因为需要在TCP上复用,如果客户端不主动断开连接,后续所有的请求都会继续复用当前服务器上的连接,只有新建连接才有可能到新的服务器上。
而有时候在业务量或者新建连接较少时,也会出现负载不均衡的问题。这是因为每个Core都是独立的调度单元,因此可能存在将某个Client的多条业务经过不同core的调度后全部转发到一台ECS上的情况,同时由于业务量较少,因此出现了不均衡。建议使用轮询算法解决,在RR轮询算法中加入了扰乱因子,可以更加有效的打散SLB到后端的转发路径。
原文链接
准备好连接linux服务器的工具,推荐用xshell和xftp。
xshell 是一个强大的安全终端模拟软件,它支持SSH1, SSH2, 以及Microsoft Windows 平台的TELNET 协议。
下载地址:http://wwwjb51net/softs/56322html
Xftp 是一个基于 MS windows 平台的功能强大的SFTP、FTP 文件传输软件。
下载地址:http://wwwjb51net/softs/81853html
安装完毕后打开xshell
linux一键安装web环境全攻略
设置云服务器登录信息
设置服务器帐号密码
设置字符集编码
设置好了就点击ok保存
一切准备就绪,让我们连接看看云linux服务器的庐山真面目吧!
黑不隆冬的,啥都没有,这就是linux的shell啦。shell(壳)到底是什么东东呢
Shell是系统的用户界面,提供了用户与内核进行交互操作的一种接口。它接收用户输入的命令并把它送入内核去执行。
linux作为服务器专用操作系统,主要就是默默的待在机房提供各项网络服务的,为了节省系统资源,像windows那样华丽丽的用户桌面就默认不加载了。当然现在越来越多的用户使用linux作为日常家庭办公用操作系统,所以就有了像gnome、kde这样超华丽的桌面。不过作为服务器使用还是推荐用命令行界面吧,毕竟省一点资源,网站打开可能会更快一点嘛!
打下面的命令去主目录(/home)看下
cd /home
现在用键盘敲入下面这行命令
cd /home && mkdir tmp && cd tmp
用xftp上传环境安装文件
回到shell界面,用ll命令看下情况
ll
是不是多了一个sh目录
接下来按照说明,分步骤敲入安装命令
chmod –R 777 sh
cd sh
/installsh
出现了一个选择提示,进入web服务器版本的选择界面
这里您可以根据需要选择apache或者nginx服务器,这里是2个服务器的介绍
apache:http://baikebaiducom/view/28283htm
nginx:http://baikebaiducom/view/926025htm
引用
在高并发连接的情况下,Nginx是Apache服务器不错的替代品。Nginx同时也可以作为7层负载均衡服务器来使用。根据我的测试结果,Nginx 0846 + PHP 5214 (FastCGI) 可以承受3万以上的并发连接数,相当于同等环境下Apache的10倍。
这里我们选择nginx,输入n,回车
到这里,我们就正式进入环境安装环节了。你可以泡杯茶休息下。一般这个过程会持续半个小时的样子。
为了防止断掉和服务器的连接,可以新开一个shell窗口,将鼠标挪到窗口标签栏,右击,如下图所示:
可以看到,新开了一个窗口
输入top命令
可以看到一直在跳动的系统资源统计
好了。做完了这一些就让我们静静的等待吧!程序正在自动编译安装服务!
到这个界面说明安装已经结束了。
大家有疑问了。那我怎么登录ftp和mysql呢
在命令行里输入:
cat accountlog
看到了没
ftp的用户名是:www
mysql的用户名是:root
密码就在屏幕上了!
好了。所有配置都已经完成了。是不是很简单!
----------------------------------------------------------------------
网站目录:/alidata/www
服务器软件目录:/alidata/server
Mysql 目录 /alidata/server/mysql
Php目录/alidata/server/php
选择了nginx 那么会有一个nginx 目录在
/alidata/server/nginx/
Nginx 配置文件在/alidata/server/nginx/conf
Nginx虚拟主机添加 你可以修改/alidata/server/nginx/conf/vhosts/phpwindconf
选择了apache那么会有一个httpd 目录在
/alidata/server/httpd
apache 配置文件在/alidata/server/httpd/conf
apache虚拟主机添加 你可以修改/alidata/server/httpd/conf/vhosts/phpwindconf
ddos手段有哪些?
ddos攻击主要有以下3种方式。
大流量攻击
大流量攻击通过海量流量使得网络的带宽和基础设施达到饱和,将其消耗殆尽,从而实现淹没网络的目的。一旦流量超过网络的容量,或网络与互联网其他部分的连接能力,网络将无法访问。大流量攻击实例包括ICMP、碎片和UDP洪水。
TCP状态耗尽攻击
TCP状态耗尽攻击试图消耗许多基础设施组件(例如负载均衡器、防火墙和应用服务器本身)中存在的连接状态表。例如,防火墙必须分析每个数据包来确定数据包是离散连接,现有连接的存续,还是现有连接的完结。同样,入侵防御系统必须跟踪状态以实施基于签名的数据包检测和有状态的协议分析。这些设备和其他有状态的设备—包括负责均衡器—被会话洪水或连接攻击频繁攻陷。例如,Sockstress攻击可通过打开套接字来填充连接表以便快速淹没防火墙的状态表。
应用层攻击
应用层攻击使用更加尖端的机制来实现黑客的目标。应用层攻击并非使用流量或会话来淹没网络,它针对特定的应用/服务缓慢地耗尽应用层上的资源。应用层攻击在低流量速率下十分有效,从协议角度看,攻击中涉及的流量可能是合法的。这使得应用层攻击比其他类型的DDoS攻击更加难以检测。HTTP洪水、DNS词典、Slowloris等都是应用层攻击的实例。
ddos防火墙原理?
DDoS防火墙是一种高效的主动防御系统可有效防御DoS/DDoS、SuperDDoS、DrDoS、代理CC、变异CC、僵尸集群CC、UDPFlood、变异UDP、随机UDP、ICMP、IGMP、SYN、SYNFLOOD、ARP攻击,传奇假人攻击、论坛假人攻击、非TCP/IP协议层攻击、等多种未知攻击。
各种常见的攻击行为均可有效识别,并通过集成的机制实时对这些攻击流量进行处理及阻断,具备远处网络监控和数据包分析功能,能够迅速获取、分析最新的攻击特征,防御最新的攻击手段。
同时,DDoS防火墙又是一款服务器安全卫士,具有多种服务器入侵防护功能,防止黑客嗅探,入侵篡改,真正做到了外防内保,为您打造一台安全省心免维护的服务器。作为国内网络防火界的新兴力量、后起之秀,DDoS防火墙的3D防护结构,高效的主动防御,以简约(操作)而不简单(功能)的思想,提供防护优秀、功能实用、操作简单、占用资源低的抗DDoS防火墙。
如何正确的防范应用层拒绝服务攻击?
使用服务器就免不了遭受恶意DDoS和CC攻击,所以最好的办法就是上高防服务器,高防服务器的海量防护带宽支持多种DDoS及CC攻击防护,你需要考虑的就是找到比较好的厂商,性价比高的,这样付出更少成本的同时又能获得更安全的防护,一般厂商都会提供免费试用,你可以先测试下防护能力
ddos流量清洗原理?
当流量被送到DDoS防护清洗中心时,通过流量清洗技术,将正常流量和恶意流量区分开,正常的流量则回注客户网站。保证高防客户网络的正常运行。
那么对于典型的DDoS攻击响应中,流量首先进入流量清洗中心,随后将此分类成基础架构攻击流量或者应用层攻击流量。
之后还会进行进一步区分,主要通过向量和期待特征确定,通过采用DDoS中心的专属技术来处理实现。
dos在应用层的防御方法?
1最常见的针对应用层DDOS攻击的防御措施,是在应用中针对每个“客户端”做一个请求频率的限制。
2应用层DDOS攻击是针对服务器性能的一种攻击,那么许多优化服务器性能的方法,都或多或少地能缓解此种攻击。合理地使用memcache就是一个很好的优化方案,将数据库的压力尽可能转移到内存中。此外还需要及时地释放资源,比如及时关闭数据库连接,减少空连接等消耗。
3在网络架构上做好优化。善于利用负载均衡分流,避免用户流量集中在单台服务器上,同时可以充分利用好CDN和镜像站点的分流作用,缓解主站的压力。
当linux下Nginx达到并发数很高,TCP TIME_WAIT套接字数量经常达到两、三万,这样服务器很容易被拖死。事实上,我们可以简单的通过修改Linux内核参数,可以减少Nginx服务器的TIME_WAIT套接字数量,进而提高Nginx服务器并发性能。
vi /etc/sysctlconf
增加以下几行:
netipv4tcp_fin_timeout = 30
netipv4tcp_keepalive_time = 1200
netipv4tcp_syncookies = 1
netipv4tcp_tw_reuse = 1
netipv4tcp_tw_recycle = 1
netipv4ip_local_port_range = 1024 65000
netipv4tcp_max_syn_backlog = 8192
netipv4tcp_max_tw_buckets = 5000简单说明:
netipv4tcp_syncookies = 1 表示开启SYN Cookies。当出现SYN等待队列溢出时,启用cookies来处理,可防范少量SYN攻击,默认为0,表示关闭;
netipv4tcp_tw_reuse = 1 表示开启重用。允许将TIME-WAIT sockets重新用于新的TCP连接,默认为0,表示关闭;
netipv4tcp_tw_recycle = 1 表示开启TCP连接中TIME-WAIT sockets的快速回收,默认为0,表示关闭。
netipv4tcp_fin_timeout = 30 表示如果套接字由本端要求关闭,这个参数决定了它保持在FIN-WAIT-2状态的时间。
netipv4tcp_keepalive_time = 1200 表示当keepalive起用的时候,TCP发送keepalive消息的频度。缺省是2小时,改为20分钟。
netipv4ip_local_port_range = 1024 65000 表示用于向外连接的端口范围。缺省情况下很小:32768到61000,改为1024到65000。
netipv4tcp_max_syn_backlog = 8192 表示SYN队列的长度,默认为1024,加大队列长度为8192,可以容纳更多等待连接的网络连接数。
netipv4tcp_max_tw_buckets = 5000 表示系统同时保持TIME_WAIT套接字的最大数量,如果超过这个数字,TIME_WAIT套接字将立刻被清除并打印警告信息。默认为180000,改 为5000。对于Apache、Nginx等服务器,上几行的参数可以很好地减少TIME_WAIT套接字数量,但是对于Squid,效果却不大。此项参 数可以控制TIME_WAIT套接字的最大数量,避免Squid服务器被大量的TIME_WAIT套接字拖死。
echo “====================== 执行以下命令使配置生效:=========================”
#更改linux内核参数后,立即生效的命令!
/sbin/sysctl -p
Nginx优化
使用FastCGI 缓存
fastcgi_cache TEST
开启FastCGI 缓存并且为其制定一个名称。个人感觉开启缓存非常有用,可以有效降低CPU 负载,并且防止502 错误。
fastcgi_cache_path /usr/local/nginx/fastcgi_cache levels=1:2
keys_zone=TEST:10m
inactive=5m;
这个指令为FastCGI 缓存指定一个路径,目录结构等级,关键字区域存储时间和非活动删除时间
其它说明
Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Ramblerru 站点开发的,它已经在该站点运行超过两年半了。Igor 将源代码以类BSD许可证的形式发布。
在高并发连接的情况下,Nginx是Apache服务器不错的替代品。Nginx同时也可以作为7层负载均衡服务器来使用。根据我的测试结 果,Nginx 0631 + PHP 526 (FastCGI) 可以承受3万以上的并发连接数,相当于同等环境下Apache的10倍。
根据我的经验,4GB内存的服务器+Apache(prefork模式)一般只能处理3000个并发连接,因为它们将占用3GB以上的内存,还 得为系统预留1GB的内存。我曾经就有两台Apache服务器,因为在配置文件中设置的MaxClients为4000,当Apache并发连接数达到 3800时,导致服务器内存和Swap空间用满而崩溃。
而这台 Nginx 0631 + PHP 526 (FastCGI) 服务器在3万并发连接下,开启的10个Nginx进程消耗150M内存(15M10=150M),开启的64个php-cgi进程消耗1280M内存 (20M64=1280M),加上系统自身消耗的内存,总共消耗不到2GB内存。如果服务器内存较小,完全可以只开启25个php-cgi进程,这样 php-cgi消耗的总内存数才500M。
0条评论