上海税务微服务无法绑定企业

上海税务微服务无法绑定企业,第1张

上海税务微服务绑定企业方法:

1、微信搜索上海税务公众号并关注,点击进入下一步。

2、在下方菜单栏中找到便民办税-上海税务微服务,然后点击进入下一步。

3、然后进入办税取号页面,在下方菜单栏中,选择预约,进入下一步。

4、进入预约类型页面,可以选择个人预约或者企业预约,个人预约需要完善个人信息填写。企业预约需要点击绑定新企业,然后完善企业信息即可绑定。

现在微服务流行,很多公司起项目都是分布式微服务,但是你想过没有,不是把一个单体拆开了,用域名去相互调就叫微服务。好的微服务架构设计模式里要求每个服务的自治性,这样服务拆分成微服务后才能稳定。

怎么才能让每个服务尽量达到自治性呢?这就需要领域事件、事件溯源、CQRS、Saga这些设计模式,不好意思一下子说了很多概念,以后慢慢给大家解释。

这几个模式里边有个关键点—需要通过把领域事件发布给远程的其他服务,完成数据同步。这就需要消息中间件了,消息中间件这块我了解的也不深,公司里用RocketMQ,不过付费版和开源版差别很大。

听说Rocket MQ很多概念也来自Kafka,学会它其他的消息中间件基本也大差不差的都会了,今天分享一篇Kafka的基础入门文章给大家

Kafka 是一个分布式的基于发布/订阅模式的消息队列(Message Queue),主要应用与大数据实时处理领域。其主要设计目标如下:

Kafka 本质上是一个 MQ(Message Queue),使用消息队列的好处?

下面给出 Kafka 一些重要概念,让大家对 Kafka 有个整体的认识和感知

Kafka分区

Kafka和Zookeeper的关系

在了解kafka集群之前, 我们先来了解下kafka的工作流程, Kafka集群会将消息流存储在 Topic 的中,每条记录会由一个Key、一个Value和一个时间戳组成。

Kafka的工作流程

Kafka 中消息是以 Topic 进行分类的,生产者生产消息,消费者消费消息,读取和消费的都是同一个 Topic。但是Topic 是逻辑上的概念, Partition 是物理上的概念,每个 Partition 对应一个 log 文件,该 log 文件中存储的就是 Producer 生产的数据。 Producer 生产的数据会不断顺序追加到该 log 文件末尾,并且每条数据都会记录有自己的 Offset 。而消费者组中的每个消费者,也都会实时记录当前自己消费到了哪个 Offset,方便在崩溃恢复时,可以继续从上次的 Offset 位置消费。

Kafka存储机制

此时 Producer 端生产的消息会不断追加到 log 文件末尾,这样文件就会越来越大, 为了防止 log 文件过大导致数据定位效率低下,那么Kafka 采取了分片和索引机制。它将每个 Partition 分为多个 Segment,每个 Segment 对应4个文件:“index” 索引文件, “log” 数据文件, “snapshot” 快照文件, “timeindex” 时间索引文件。这些文件都位于同一文件夹下面,该文件夹的命名规则为:topic 名称-分区号。例如, heartbeat心跳上报服务 这个 topic 有三个分区,则其对应的文件夹为 heartbeat-0,heartbeat-1,heartbeat-2这样。

index, log, snapshot, timeindex 文件以当前 Segment 的第一条消息的 Offset 命名。其中 “index” 文件存储大量的索引信息,“log” 文件存储大量的数据,索引文件中的元数据指向对应数据文件中 Message 的物理偏移量。

下图为index 文件和 log 文件的结构示意图:

index 文件和 log 文件的结构示意图

kafka中的 Partition 为了保证数据安全,每个 Partition 可以设置多个副本。此时我们对分区0,1,2分别设置3个副本(注:设置两个副本是比较合适的)。而且每个副本都是有"角色"之分的,它们会选取一个副本作为 Leader 副本,而其他的作为 Follower 副本,我们的 Producer 端在发送数据的时候,只能发送到Leader Partition里面 ,然后Follower Partition会去Leader那自行同步数据, Consumer 消费数据的时候,也只能从 Leader 副本那去消费数据的。

Kafka集群副本

Kafka集群副本

Kafka Controller,其实就是一个 Kafka 集群中一台 Broker,它除了具有普通Broker 的消息发送、消费、同步功能之外,还需承担一些额外的工作。Kafka 使用公平竞选的方式来确定 Controller ,最先在 ZooKeeper 成功创建临时节点 /controller 的Broker会成为 Controller ,一般而言,Kafka集群中第一台启动的 Broker 会成为Controller,并将自身 Broker 编号等信息写入ZooKeeper临时节点/controller。

Consumer 在消费过程中可能会出现断电宕机等故障,在 Consumer 恢复后,需要从故障前的 Offset 位置继续消费。所以 Consumer 需要实时记录自己消费到了哪个 Offset,以便故障恢复后继续消费。在 Kafka 09 版本之前,Consumer 默认将 Offset 保存在 ZooKeeper 中,但是从 09 版本开始,Consumer 默认将 Offset 保存在 Kafka 一个内置的 Topic 中,该 Topic 为 __consumer_offsets, 以支持高并发的读写。

上面和大家一起深入探讨了 Kafka 的简介, 基础知识和集群架构,下一篇会从Kafka 三高(高性能, 高可用, 高并发)方面来详细阐述其巧妙的设计思想。大家期待

其实绑定民生银行企业微服务的方法特别简单,以苹果12iOS15为例。登录民生银行手机银行,进入主界面,点击我的账户。进入我的账户界面后,点击添加银行卡。进入添加账户界面后,页面上会显示自己的银行卡账户。在需要添加银行卡下选择添加。点击“添加”后,页面会弹出该卡的账号和别名,在账户空白处填写4位账号就可以了。

一、民生银行是一家什么样的银行

民生银行就是中国民生银行股份有限公司,简称CMBC、民生银行上交所:600016港交所:01988)是中国大陆第一家由民间资本设立的全国性商业银行,成立于1996年1月12日。主要股东包括刘永好新希望集团、张宏伟东方集团和卢志强中国泛海控股集团。王玉贵代表中国船东互保协会、中国人寿保险公司、史玉柱,等。

二、民生银行微服务的特点

在微服务方面,民生银行上海分行结合自身业务发展特点,依托网点打造小微专业服务管理团队,快速响应小微客户全方位金融需求,提升小微业务人员专业技能和道德素养,持续加强小微客户经理管理。除了传统的小微企业融资结算服务,民生银行上海分行构建了基于大数据分析的“11N”全景生态图,为小微客户背后的企业、家庭、员工及上下游合作伙伴提供包括增值服务、财富规划、子女教育、保险保障等一系列配套金融产品,以综合金融解决方案的形式全面服务小微客户的生活圈和商圈。

由以上可知,绑定民生银行企业微服务的方法特别简单,还是要提醒大家在绑定自己的身份信息的同时一定要谨慎,避免被泄露。

在微服务中,一个逻辑上原子操作可以经常跨越多个微服务。即使是单片系统也可能使用多个数据库或消息传递解决方案。使用多个独立的数据存储解决方案,如果其中一个分布式流程参与者出现故障,我们就会面临数据不一致的风险 - 例如在未下订单的情况下向客户收费或未通知客户订单成功。在本文中,我想分享一些我为使微服务之间的数据最终保持一致而学到的技术。

为什么实现这一目标如此具有挑战性?只要我们有多个存储数据的地方(不在单个数据库中),就不能自动解决一致性问题,工程师在设计系统时需要注意一致性。 目前,在我看来,业界还没有一个广为人知的解决方案,可以在多个不同的数据源中自动更新数据 - 我们可能不应该等待很快就能获得一个。

以自动且无障碍的方式解决该问题的一种尝试是实现两阶段提交(2PC)模式的XA协议。但在现代高规模应用中(特别是在云环境中),2PC似乎表现不佳。为了消除2PC的缺点,我们必须交易ACID for BASE并根据要求以不同方式覆盖一致性问题。

在多个微服务中处理一致性问题的最着名的方法是Saga模式。 您可以将Sagas视为多个事务的应用程序级分布式协调 。 根据用例和要求,您可以优化自己的Saga实施。 相反,XA协议试图涵盖所有场景。 Saga模式也不是新的。 它在过去已知并用于ESB和SOA体系结构中。 最后,它成功地转变为微服务世界。 跨越多个服务的每个原子业务操作可能包含技术级别的多个事务。 Saga Pattern的关键思想是 能够回滚其中一个单独的交易 。 众所周知,开箱即用的已经提交的单个事务无法进行回滚。 但这是通过引入 补偿操作来 实现的 - 通过引入“取消”操作。

除了 取消 之外,您还应该考虑使您的服务具有 幂等性 ,以便在出现故障时重试或重新启动某些操作。 应监控故障,并应积极主动地应对故障。

如果在进程的中间 负责调用补偿操作的系统崩溃或重新启动 ,该怎么办? 在这种情况下,用户可能会收到错误消息,并且应该触发补偿逻辑,或者 - 当处理异步用户请求时,应该恢复执行逻辑。

要查找崩溃的事务并恢复操作或应用补偿,我们需要协调来自多个服务的数据。 对账

是在金融领域工作的工程师所熟悉的技术。你有没有想过银行如何确保你的资金转移不会丢失,或者两个不同的银行之间如何汇款?快速回答是对账。

回到微服务,使用相同的原则,我们可以在一些 动作触发器 上协调来自多个服务的数据。当检测到故障时,可以按计划或由监控系统触发操作。最简单的方法是运行逐记录比较。可以通过 比较聚合值来 优化该过程。在这种情况下,其中一个系统将成为每条记录的真实来源。

想象一下多步骤交易。如何在对帐期间确定哪些事务可能已失败以及哪些步骤失败?一种解决方案是 检查每个事务的状态 。在某些情况下,此功能不可用(想象一下发送电子邮件或生成其他类型消息的无状态邮件服务)。在其他一些情况下,您可能希望立即了解事务状态,尤其是在具有许多步骤的复杂方案中。例如,预订航班,酒店和转机的多步订单。

在这些情况下,事件日志可以提供帮助。 记录是一种简单但功能强大的技术 许多分布式系统依赖于日志 。 “ 预写日志记录 ”是数据库在内部实现事务行为或维护副本之间一致性的方式。相同的技术可以应用于微服务设计。在进行实际数据更改之前,服务会写入有关其进行更改的意图的日志条目。实际上, 事件日志可以是协调服务所拥有的数据库中的表或集合

事件日志不仅可用于 恢复事务处理 ,还可用于为系统用户,客户或支持团队提供 可见性 。但是,在简单方案中,服务日志可能是冗余的, 状态端点或状态字段 就足够了。

到目前为止,您可能认为sagas只是编配(orchestration )方案的一部分。但是sagas也可以用于编排(choreography ),每个微服务只知道过程的一部分。 Sagas包括处理分布式事务的正流和负流的知识。在编排(choreography )中,每个分布式事务参与者都具有这种知识。

到目前为止描述的一致性解决方案并不容易。他们确实很复杂。但有一种更简单的方法: 一次修改一个数据源 。我们可以将这两个步骤分开,而不是改变服务的状态并在一个过程中发出事件。

在主要业务操作中,我们修改自己的服务状态,而单独的进程可靠地捕获更改并生成事件。这种技术称为变更数据捕获(CDC)。实现此方法的一些技术是Kafka Connect或Debezium。

但是,有时候不需要特定的框架。一些数据库提供了一种友好的方式来拖尾其操作日志,例如MongoDB Oplog。如果数据库中没有此类功能,则可以通过时间戳轮询更改,或使用上次处理的不可变记录ID查询更改。避免不一致的关键是使数据更改通知成为一个单独的过程。在这种情况下,数据库记录是 单一的事实来源 。只有在首先发生变化时才会捕获更改。

更改数据捕获的最大缺点是业务逻辑的分离。更改捕获过程很可能与更改逻辑本身分开存在于您的代码库中 - 这很不方便。最知名的变更数据捕获应用程序是与域无关的变更复制,例如与数据仓库共享数据。对于域事件,最好采用不同的机制,例如明确发送事件。

让我们来看看颠倒的单一事实来源。如果不是先写入数据库,而是先触发一个事件,然后与自己和其他服务共享。在这种情况下,事件成为事实的唯一来源。这将是一种事件源的形式,其中我们自己的服务状态有效地成为读取模型,并且每个事件都是写入模型。

“事件优先”方法面临的挑战也是CQRS本身的挑战。想象一下,在下订单之前,我们想要检查商品的可用性。如果两个实例同时收到同一项目的订单怎么办?两者都将同时检查读取模型中的库存并发出订单事件。如果没有某种覆盖方案,我们可能会遇到麻烦。

处理这些情况的常用方法是乐观并发:将读取模型版本放入事件中,如果读取模型已在消费者端更新,则在消费者端忽略它。另一种解决方案是使用悲观并发控制,例如在检查项目可用性时为项目创建锁定。

“事件优先”方法的另一个挑战是任何事件驱动架构的挑战 - 事件的顺序。多个并发消费者以错误的顺序处理事件可能会给我们带来另一种一致性问题,例如处理尚未创建的客户的订单。

诸如Kafka或AWS Kinesis之类的数据流解决方案可以保证将按顺序处理与单个实体相关的事件(例如,仅在创建用户之后为客户创建订单)。例如,在Kafka中,您可以按用户ID对主题进行分区,以便与单个用户相关的所有事件将由分配给该分区的单个使用者处理,从而允许按顺序处理它们。相反,在Message Brokers中,消息队列具有一个订单,但是多个并发消费者在给定顺序中进行消息处理(如果不是不可能的话)。在这种情况下,您可能会遇到并发问题。

实际上,在需要线性化的情况下或在具有许多数据约束的情况(例如唯一性检查)中,难以实现“事件优先”方法。但它在其他情况下确实很有用。但是,由于其异步性质,仍然需要解决并发和竞争条件的挑战。

有许多方法可以将系统拆分为多个服务。我们努力将单独的微服务与单独的域匹配。但域名有多细化?有时很难将域与子域或聚合根区分开来。没有简单的规则来定义您的微服务拆分。

虽然匹配帐户余额至关重要,但有许多用例,其中一致性不那么重要。想象一下,为分析或统计目的收集数据。即使我们从系统中随机丢失了10%的数据,也很可能不会影响分析的业务价值。

数据的原子更新需要两个不同系统之间达成共识,如果单个值为0或1则达成协议。当涉及到微服务时,它归结为两个参与者之间的一致性问题,并且所有实际解决方案都遵循一条经验法则:

在给定时刻,对于每个数据记录,您需要找到系统信任的数据源

事实的来源可能是事件,数据库或其中一项服务。实现微服务系统的一致性是开发人员的责任。我的方法如下:

网络故障或使用人数过多造成卡顿。监管微服务里面在押人的信息信息无法绑定的原因是网络故障或信息输入错误。可以更换网络,重新刷新,再检查一下输入信息是否错误。监管微服务利用互联网与监所日常业务应用相结合,为监所提供预约、消费、财务管理、寄钱寄物管理、警务公开、被监管人员需求告知等系统。

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » 上海税务微服务无法绑定企业

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情