腾讯服务器为什么在海里,第1张

因为把服务器放到海里能实现自然降温,冷却服务器,不会让服务器过热,产生爆炸等危险。

要知道,腾讯支持着全国各种业务、软件的使用,所需要用到的服务器可想而知有多少,为了使这么多服务器可以尽量节约成本的情况下冷却,放在海里是最好的选择。

2014年微软开始着手将服务器放置于水下的计划,同年开始在海里做投放实验,他们将300台电脑的服务器,放置进一个重约十七吨的密封舱内,该密封舱是全钢制的。而且密封舱内同时还装载着100多个传感器。岸上的工作人员随时可以通过这些传感器感知到水压和温度,便于及时发现并处理特殊情况。

一切就绪后微软的团队将这个密封舱投入加州海岸的近海区。第一次试验结束后,为证明海底数据中心是可行的。2019年微软又进行了第二次海底数据试验,这次的实验规模更大,装载的电脑服务器更多,一共有864台电脑服务器,相比较第一次的钢制密封罐。

这次试用的密封设备更像一艘小型潜艇,它的长度超过十米。而这次的实验周期为期五年。同样将服务器放在水里的还有阿里巴巴,阿里将自家服务器藏在了千岛湖里面,去过旅游的游客应该有听导游介绍过吧。服务器在运行过程中会散发大量热气,此时必须做好散热,不然可能会有烧坏的风险。

如何将本地文件传输到阿里云服务器?

有几个方法供你参考。

第一种是在阿里云服务器中搭建FTP服务提供商,用FTP客户端在本地上传文件。

第二种:进入阿里云服务器远程界面时,带入本地磁盘,然后进入服务器直接从本地磁盘复制文件到服务器。

第三种:QQ安装在阿里云服务器上,通过QQ传输。

第四:上传本地文件到邮箱,然后在阿里云服务器打开你的邮箱,下载文件。

如何把文件快速上传到阿里云服务器?

1、直接用FTP上传2、直接远程连接直接复制粘贴3、可以先上传到Q邮箱或者百度网盘,接着在服务器上登录下载就可以了。

怎样往阿里云服务器传文件?

服务器是win操作系统就从你本地电脑复制,到阿里云服务器上面粘贴,使用远程桌面软件。服务器是linux操作系统,就使用sftp软件去操作,上传文件。

阿里云网站怎么上传自己的产品?

首先要叫阿云阿里云网站那里建立我的店面。然后再把自己的产品上传到店面去就可以了。

阿里云盘怎么批量上传?

我们需要把多个文件上传到阿里的云盘,我们可以通过一次性操作把多个文件上传到云盘。首先呢,我们就是把这个多文件放在一个文件夹内。

然后就是打开阿里的云盘,点击上传,在弹出的界面中找到我们以前建立的文件夹,选中多个文件,点击确定就可以。

阿里云盘怎么上传?

1、打开阿里云盘APP,点击“+”按钮。

2、选择上传到云盘的文件类型,支持照片、视频、文件等格式!

3、选择需要上传阿里云盘的文件。

4、在点击右上角的上传选项,等待上传的时间!

5、完成传输列,操作完成,目前上传和下载都不限速。

以下内容来自于淘宝网的:开源绿色计算 主要用在CDN的节点服务器上,可以点进去了解更多

      

随着淘宝用户数和访问量的增加,网络上部署的服务器数量也在不断的增长。为了保障用户体验,淘宝在全网部署了几十个用于加速的WebCache节点,服务器的数量达到数千,其每天消耗的电量非常惊人。在整个淘宝网运营成本中,电消耗成本已占了相当比重并逐年增加。因此,节约服务用电量,已经成为不得不考虑的问题。最直接的方法,就是在满足性能要求的前提下,采用比传统服务器省电的低功耗服务器。定制低功耗服务器,就成为降低能耗的主要方案。 

      

目前市场上的低功耗服务器,与传统服务器的主要区别,在于采用了低功耗CPU。低功耗CPU在带来低功耗的同时,也损失了处理速度。因此,消耗CPU资源少的应用,是低功耗服务器首要应用场景。从目前淘宝整个服务器体系看,满足这一要求的是CDN web cache服务器。因此,淘宝网的低功耗服务器的定制实践,始于Cache服务器的应用需求。

传统的低功耗处理器,其节省功耗的原理,是在原有高性能处理器的基础上,通过控制处理器在闲时的主频和耗电,同时简化乱序处理的逻辑模块,来减少不必要的消耗。但受限于原有的高性能架构,整体功耗降低效果并不明显,特别是在IO密集型的业务上。而用于静态内容加速的CDN web cache服务器,主要功能正是对静态的网页和进行读写操作,属于IO密集型业务。因此,针对IO密集型业务,我们需要寻找区别于以往传统的、更低功耗的处理器及其服务器方案。      

基于上述背景,由淘宝针对自身的需求,在Intel和美超微等厂家的支持下定制了一款绿色低功耗的服务器。在该服务器定制完成并且进行一定规模应用的基础上,联合Intel和超微等硬件厂家共同发起开源“绿色计算”项目。该项目的主要目标是推动互联网整体硬件基础设施(包括服务器、网络设备、IDC机房、机架和电源等)的节能环保;项目组织方式是采用多方合作的机制吸纳业内同行共同参与该项目,项目的运转方式是根据不同的设施类型分成不同的子项目,分别有特定的参与方负责推动在该方向上“绿色”设备的定制化、产品化和规模化;项目的成果将以开源的方式发布到项目网站上供业内的人士分享。目前该项目只ATOM低功耗服务器这一款定制化的“绿色”产品,后续希望能够有更多的同行参与该项目,开发其他方向上的“绿色”设备,共同推动“绿色计算”产业的发展。

转载:阿里巴巴为什么选择ApacheFlink?

本文主要整理自阿里巴巴计算平台事业部高级技术专家莫问在云起大会上的演讲。

一棵大树从一棵小树苗长成;小小橡实可能长成参天大树

随着人工智能时代的到来和数据量的爆炸,在典型的大数据业务场景中,最常见的数据业务方式是使用批处理技术处理全量数据和流计算处理实时增量数据。在大多数业务场景中,用户的业务逻辑在批处理和流处理中往往是相同的。但是,用户用于批处理和流处理的两套计算引擎是不同的。

因此,用户通常需要编写两套代码。无疑,这带来了一些额外的负担和成本。阿里巴巴的商品数据处理往往需要面对增量和全量两种不同的业务流程,所以阿里在想,我们能不能有一个统一的大数据引擎技术,用户只需要根据自己的业务逻辑开发一套代码就可以了。在这样不同的场景下,无论是全数据还是增量数据,还是实时处理,都可以有一套完整的解决方案支持,这也是阿里选择Flink的背景和初衷。

目前开源的大数据计算引擎有很多选择,如Storm、Samza、Flink、KafkaStream等。、以及Spark、Hive、Pig、Flink等批量处理。但是同时支持流处理和批处理的计算引擎只有两个选择:一个是ApacheSpark,一个是ApacheFlink。

技术、生态等多方面综合考虑。首先,Spark的技术思路是模拟基于批量的流量计算。另一方面,Flink使用基于流的计算来模拟批处理计算。

从技术发展的角度来看,用批处理来模拟流程存在一定的技术局限性,这种局限性可能很难突破。Flink基于流模拟批处理,在技术上具有更好的可扩展性。从长远来看,阿里决定将Flink作为统一通用的大数据引擎作为未来的选择。

Flink是一个统一的大数据计算引擎,具有低延迟、高吞吐量。在阿里巴巴的生产环境中,Flink的计算平台每秒可以处理数亿条消息或事件,延迟为毫秒级。同时,Flink提供了一次性的一致性语义。保证了数据的正确性。这样,Flink大数据引擎就可以提供金融数据处理能力。

弗林克在阿里的现状

基于ApacheFlink在阿里巴巴搭建的平台于2016年正式上线,从阿里巴巴的搜索和推荐两个场景实现。目前,包括阿里巴巴所有子公司在内的所有阿里巴巴业务都采用了基于Flink的实时计算平台。同时,Flink计算平台运行在开源的Hadoop集群上。Hadoop的YARN作为资源管理调度,HDFS作为数据存储。所以Flink可以和开源大数据软件Hadoop无缝对接。

目前,这个基于Flink的实时计算平台不仅服务于阿里巴巴集团,还通过阿里云的云产品API向整个开发者生态系统提供基于Flink的云产品支持。

Flink在阿里巴巴的大规模应用表现如何?

规模:一个系统是否成熟,规模是一个重要的指标。Flink最初推出阿里巴巴只有几百台服务器,现在已经达到上万台服务器,在全球屈指可数;

状态数据:基于Flink,内部积累的状态数据已经是PB规模;

事件:如今,每天在Flink的计算平台上处理的数据超过万亿条;

PS:高峰期每秒可承担超过472亿次访问,最典型的应用场景是阿里巴巴双11的大屏;

弗林克的发展之路

接下来,从开源技术的角度,我们来谈谈ApacheFlink是如何诞生,如何成长的。而阿里又是如何在这个成长的关键时刻进来的?你对它做过哪些贡献和支持?

Flink诞生于欧洲大数据研究项目平流层。这个项目是柏林工业大学的一个研究项目。早期,Flink做的是批量计算,但2014年,同温层的核心成员孵化了Flink,同年将Flink捐赠给Apache,后来成为Apache最顶尖的大数据项目。同时,Flink计算的主流方向被定位为流式,即使用流式计算来计算所有的大数据。这就是Flink技术诞生的背景。

2014年,Flink作为专注于流计算的大数据引擎,开始在开源大数据行业崭露头角。不同于Storm、SparkStreaming等流计算引擎,它不仅是一个高吞吐量、低延迟的计算引擎,还提供了许多高级功能。比如提供有状态计算,支持状态管理,支持数据语义的强一致性,支持事件时间,水印处理消息无序。

Flink核心概念和基本概念

Flink区别于其他流计算引擎的地方其实是状态管理。

是什么状态?比如开发一套流量计算系统或者任务做数据处理,可能经常需要对数据做统计,比如Sum,Count,Min,Max,这些值都需要存储。因为它们是不断更新的,所以这些值或变量可以理解为一种状态。如果数据源正在读取Kafka,RocketMQ,可能需要记录读取的位置并记录偏移量。这些偏移变量是要计算的状态。

Flink提供了内置的状态管理,可以将这些状态存储在Flink内部,而不需要存储在外部系统中。这样做有以下优点:第一,减少了计算引擎对外部系统的依赖和部署,运维更简单;其次,在性能上有了很大的提升:如果是通过外部访问,比如Redis,HBase必须通过网络和RPC访问。如果Flink在内部访问这些变量,它只通过自己的进程访问这些变量。同时,Flink会定期让这些状态的检查点持久化,并将检查点存储在分布式持久化系统中,比如HDFS。这样,当Flink的任务出错时,它会从最新的检查点恢复整个流的状态,然后继续运行它的流处理。对用户没有数据影响。

Flink如何保证在检查点恢复的过程中没有数据丢失或冗余?要保证计算准确?

原因是Flink使用了一套经典的Chandy-Lamport算法,其核心思想是将这种流计算视为一种流拓扑,在这种拓扑的头部有规律地插入来自源点的特殊屏障,并将屏障从上游广播到下游。当每个节点接收到所有栅栏时,它将拍摄状态快照。每个节点完成快照后,整个拓扑将被视为一个完整的检查点。接下来,无论发生什么故障,都会从最近的检查点恢复。

Flink使用这种经典算法来确保语义的强一致性。这也是Flink与其他无状态流计算引擎的核心区别。

以下是Flink解决无序问题的方法。比如星球大战的序列,如果按照上映时间来看,可能会发现故事在跳跃。

在流量计算上,和这个例子很像。所有消息的到达时间与源在线系统日志中实际发生的时间不一致。在流处理的过程中,希望消息按照它们在源端实际发生的顺序进行处理,而不是按照它们实际到达程序的时间。Flink提供了一些先进的事件时间和水印技术来解决乱序问题。以便用户可以有序地处理该消息。这是Flink的一个很重要的特点。

接下来介绍一下Flink起步时的核心概念和理念,这是Flink发展的第一阶段;第二阶段是2015年和2017年。这个阶段也是Flink发展和阿里巴巴介入的时候。故事源于2015年年中我们在搜索事业部做的一项调查。当时阿里有自己的批处理技术和流计算技术,既有自研的,也有开源的。但是,为了思考下一代大数据引擎的方向和未来趋势,我们对新技术做了大量的研究。

结合大量的研究成果,我们最终得出结论,解决一般大数据计算需求,整合批量流的计算引擎是大数据技术的发展方向,最终我们选择了Flink。

但2015年的Flink还不够成熟,规模和稳定性都没有付诸实践。最后我们决定在阿里成立Flink分公司,对Flink进行大量的修改和改进,以适应阿里巴巴的超大型业务场景。在这个过程中,我们团队不仅改进和优化了Flink的性能和稳定性,还在核心架构和功能上做了大量的创新和改进,并贡献给了社区,比如:Flink全新的分布式架构、增量式检查点机制、基于信用的网络流量控制机制和流式SQL。

阿里巴巴对Flink社区的贡献

我们来看两个设计案例。第一个是阿里巴巴重构了Flink的分布式架构,对Flink的作业调度和资源管理做了明确的分层和解耦。这样做的第一个好处是Flink可以在各种开源资源管理器上本地运行。这种分布式架构改进后,Flink可以原生运行在HadoopYarn和Kubernetes这两种最常见的资源管理系统上。同时将Flink的任务调度由集中式调度改为分布式调度,使Flink可以支持更大的集群,获得更好的资源隔离。

另一个是实现增量检查点机制,因为Flink提供了有状态计算和规则检查点机制。如果内部数据越来越多,检查点就会越来越大,最终可能导致做不下去。提供增量检查点后,Flink会自动找出哪些数据是增量更改的,哪些数据是修改的。同时,只有这些修改过的数据被持久化。这样检查点就不会随着时间的运行越来越难,整个系统的性能也会非常稳定,这也是我们贡献给社区的一个非常重要的特性。

经过2015-2017年对Flink流媒体能力的提升,Flink社区逐渐走向成熟。Flink也成为了流媒体领域最主流的计算引擎。因为Flink最开始是想做一个统一流式、批量处理的大数据引擎,这个工作在2018年就已经开始了。为了实现这一目标,阿里巴巴提出了新的统一API架构和统一SQL解决方案。同时,在流式计算的各种功能得到改进后,我们认为批量计算也需要各种改进。无论在任务调度层还是数据洗牌层,在容错性和易用性方面都有很多工作需要改进。

究其原因,这里有两个要点与大家分享:

●统一的API堆栈

●统一的SQL方案

我们来看看FlinkAPI栈的现状。研究过Flink或者用过Flink的开发者应该知道。Flink有两个基本的API,一个是数据流,一个是数据集。数据流API提供给流用户,数据集API提供给批量用户,但是这两个API的执行路径完全不同,甚至需要生成不同的任务来执行。所以这和统一API是冲突的,这也是不完善的,不是最终的解决方案。在运行时之上,应该有一个统一批量流程集成的基础API层,我们希望API层能够统一。

因此,我们将在新架构中采用一个DAG(有限非循环图)API作为批处理流的统一API层。对于这种有限无环图,批量计算和流量计算不需要明确表示。开发者只需要在不同的节点和不同的边定义不同的属性,就可以规划数据是流属性还是批属性。整个拓扑是一个统一的语义表达,可以集成批量流。整个计算不需要区分流量计算和批量计算,只需要表达自己的需求。有了这个API,Flink的API栈就统一了。

除了统一的基础API层和统一的API栈,SQL解决方案在上层也是统一的。而批处理SQL,我们可以认为有流计算和批处理计算的数据源,我们可以把这两个数据源模拟成数据表。可以认为流数据的数据源是一个不断更新的数据表,而批量数据的数据源可以认为是一个相对静态的表,没有更新的数据表。整个数据处理可以看作是SQL的一个查询,最终结果也可以模拟成一个结果表。

对于流计算,它的结果表是一个不断更新的结果表。对于批处理,其结果表是相当于一次更新的结果表。从整个SOL语义表达来看,flow和batch是可以统一的。此外,流SQL和批处理SQL都可以使用同一个查询来表示重用。通过这种方式,所有流批次都可以通过同一个查询进行优化或解析。甚至许多流和批处理操作符都可以重用。

弗林克的未来方向

首先,阿里巴巴要基于Flink的本质做一个全能的统一大数据计算引擎。放在生态和场景的地面上。目前Flink是主流的流计算引擎,很多互联网公司已经达成共识,Flink是大数据的未来,是最好的流计算引擎。接下来的重要任务是让Flink在批量计算上有所突破。在更多的场景下,已经成为主流的批量计算引擎。然后进行流量和批次的无缝切换,流量和批次的界限越来越模糊。使用Flink,在一个计算中,可以同时进行流量计算和批量计算。

第二个方向是Flink得到更多语言的生态支持,不仅仅是Java,Scala,还有Python和Go进行机器学习。未来希望用更丰富的语言开发Flink计算任务,描述计算逻辑,连接更多生态。

最后不得不说AI,因为很多大数据计算需求和数据量都在支撑非常热门的AI场景。所以我们会在完善Flink流批生态的基础上,继续往上走,完善上层Flink的机器学习算法库。同时,Flink会借鉴成熟的机器,深度学习融合。比如Flink上的Tensorflow,可以用来整合大数据的ETL数据处理和机器学习的特征计算、特征计算,以及训练的计算,让开发者同时享受多个生态系统带来的好处。

阿里巴巴云境是什么东西?

这个是阿里巴巴做的一款信息化系统产品,主要针对中小企业,它的服务器硬件的支持,都是阿里放在云端的。相当于都是由阿里来帮你管理数据,客户的硬件投入非常低,系统管理成本也很低,通常是以年费的形式来运行。

为什么阿里巴巴,腾讯等这些公司要把服务器放在美国?

为了让美国人民享受到阿里巴巴和腾讯的服务啊,另外国内的人到美国去,也是需要相关的服务的。

阿里巴巴属于哪个行业?

阿里巴巴主营属于电子商务,还包括互联网金融、电子支付、物流等。同时,阿里巴不断发展还涉及到更广的领域,比如传媒、物联网等。

阿里巴巴集团本家产业:阿里巴巴、淘宝、支付宝、阿里软件、阿里妈妈、口碑网、阿里云、中国雅虎、一淘网、淘宝商城、中国万网,聚划算、云峰基金、蚂蚁金服。

一般的网店需要多大的服务器?

不需要因为你申请的淘宝店是一个虚拟空间来着,在阿里巴巴自已建设的机房之中,可直接使用,无需自备服务器。直接装修店铺,上架商品即可

阿里千岛湖数据中心建在湖底吗?

是的,阿里巴巴的一个服务器中心就放在千岛湖湖底。阿里云千岛湖数据中心建筑面积30000平方米,共11层,可容纳至少5万台设备。作为水冷驱动的工业数据中心建设的模板,很有创新性和代表性。数据中心90%时间不需要电制冷,深层湖水通过完全密闭的管道流经数据中心,帮助服务器降温,再流经25公里的青溪新城中轴溪,作为城市景观呈现,自然冷却后又回到千岛湖。

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » 腾讯服务器为什么在海里

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情