飞猪抢票加钱成功率高吗,第1张

飞猪抢票加钱成功率高。原因有高效的服务器架构、多线程并发抢票。

1、高效的服务器架构:飞猪抢票系统采用高效的服务器架构,保证系统的稳定性和高效性。

2、多线程并发抢票:飞猪抢票系统会使用多线程并发抢票,提高抢票效率和成功率。

1、减少内存分配和释放

服务器在运行过程中,需要大量的内存容量来支撑,内存的分配和释放就尤为关键。用户在使用服务器的时候,可以通过改善数据结构以及算法制度来减少中间临时变量的内存分配和数据复制时间。

另外,可以选择使用共享内存模式来降低内存的分配和释放问题。共享内存在多处理器系统中,可以被不同的中央处理器访问,也可以有不同的进程共享,是一种非常快的进程通信方式。

2、使用持久链接

持久链接也被称为场链接,是通过TCP通信的一种方式。在一次TCP链接中持续发送多份数据而不断开连接。

从性能角度上来讲,建立TCP链接次数越少,越有利于性能的提升,尤其对于密集型或者网页等数据处理上来说有明显的加速作用。

3、改进I/O模型

I/O操作根据设备形式有不同的类型,例如我们常见的内存I/O,网络I/O,磁盘I/O。针对网络I/O和磁盘I/O, 它们的速度要慢很多,可以选择采用高带宽网络适配器可以提高网络I/O速度。

以上的I/O操作时需要CPU来调度的,这就需要CPU空出时间来等待I/O操作。如果在CPU调度上使用时间较少,也就能节约出CPU的处理时间,从这一点上来说也是提升高服务器并发处理能力的方式。

4、改进服务器并发数策略

服务器高并发策略的调整,是为了让I/O操作和CPU计算尽量重叠进行。一方面使CPU在I/O操作时等待时间内不要空闲,另一方面也是为了最大限度缩短等待时间。感兴趣的话点击此处,了解一下

任何一项技术的出现都是为了解决现有问题。

之前的互联网大多是单机服务,体量小。而现在的更多是集群服务,同一时刻有多个用户同时访问服务器,那么就会有很多线程并发访问。

比如,常见的电商系统场景,同一时刻比如整点抢购时,会有海量用户同时访问服务器。

如果不使用多线程处理,那基本凉凉……

所以现在公司里开发基本都是多线程的。使用多线程确实提高了运行的效率。

但与此同时,也会伴随着一些问题出现,让人很头痛。

比如,需要特别注意数据的增删改情况,也就是线程安全问题。

想要保证线程安全也有很多方式,比如说:加锁。

但是,又可能会出现其他问题,比如:死锁,所以多线程相关问题会比较麻烦。

面试官现在也非常喜欢拿多线程来考你,比如:

产生死锁的条件是什么,怎么解决死锁?

乐观锁和悲观锁如何实现,有哪些实现方式?

非公平锁和公平锁在ReentrantLock中的实现?

Lock 和 synchronized 有什么区别?

ReentrantLock和synchronized如何选择?

如今多线程在面试中已经是常客了,同时也是我们必备的知识点。

因此,我们需要理解多线程的原理和它可能会产生的问题以及如何解决问题,才能拿下高薪职位。

主要内容:

进程是资源分配的最小单位,每个进程都有独立的代码和数据空间,一个进程包含 1 到 n 个线程。线程是 CPU 调度的最小单位,每个线程有独立的运行栈和程序计数器,线程切换开销小。

Java 程序总是从主类的 main 方法开始执行,main 方法就是 Java 程序默认的主线程,而在 main 方法中再创建的线程就是其他线程。在 Java 中,每次程序启动至少启动 2 个线程。一个是 main 线程,一个是垃圾收集线程。每次使用 Java 命令启动一个 Java 程序,就相当于启动一个 JVM 实例,而每个 JVM 实例就是在操作系统中启动的一个进程。

多线程可以通过继承或实现接口的方式创建。

Thread 类是 JDK 中定义的用于控制线程对象的类,该类中封装了线程执行体 run() 方法。需要强调的一点是,线程执行先后与创建顺序无关。

通过 Runnable 方式创建线程相比通过继承 Thread 类创建线程的优势是避免了单继承的局限性。若一个 boy 类继承了 person 类,boy 类就无法通过继承 Thread 类的方式来实现多线程。

使用 Runnable 接口创建线程的过程:先是创建对象实例 MyRunnable,然后将对象 My Runnable 作为 Thread 构造方法的入参,来构造出线程。对于 new Thread(Runnable target) 创建的使用同一入参目标对象的线程,可以共享该入参目标对象 MyRunnable 的成员变量和方法,但 run() 方法中的局部变量相互独立,互不干扰。

上面代码是 new 了三个不同的 My Runnable 对象,如果只想使用同一个对象,可以只 new 一个 MyRunnable 对象给三个 new Thread 使用。

实现 Runnable 接口比继承 Thread 类所具有的优势:

线程有新建、可运行、阻塞、等待、定时等待、死亡 6 种状态。一个具有生命的线程,总是处于这 6 种状态之一。 每个线程可以独立于其他线程运行,也可和其他线程协同运行。线程被创建后,调用 start() 方法启动线程,该线程便从新建态进入就绪状态。

NEW 状态(新建状态) 实例化一个线程之后,并且这个线程没有开始执行,这个时候的状态就是 NEW 状态:

RUNNABLE 状态(就绪状态):

阻塞状态有 3 种:

如果一个线程调用了一个对象的 wait 方法, 那么这个线程就会处于等待状态(waiting 状态)直到另外一个线程调用这个对象的 notify 或者 notifyAll 方法后才会解除这个状态。

run() 里的代码执行完毕后,线程进入终结状态(TERMINATED 状态)。

线程状态有 6 种:新建、可运行、阻塞、等待、定时等待、死亡。

我们看下 join 方法的使用:

运行结果:

我们来看下 yield 方法的使用:

运行结果:

线程与线程之间是无法直接通信的,A 线程无法直接通知 B 线程,Java 中线程之间交换信息是通过共享的内存来实现的,控制共享资源的读写的访问,使得多个线程轮流执行对共享数据的操作,线程之间通信是通过对共享资源上锁或释放锁来实现的。线程排队轮流执行共享资源,这称为线程的同步。

Java 提供了很多同步操作(也就是线程间的通信方式),同步可使用 synchronized 关键字、Object 类的 wait/notifyAll 方法、ReentrantLock 锁、无锁同步 CAS 等方式来实现。

ReentrantLock 是 JDK 内置的一个锁对象,用于线程同步(线程通信),需要用户手动释放锁。

运行结果:

这表明同一时间段只能有 1 个线程执行 work 方法,因为 work 方法里的代码需要获取到锁才能执行,这就实现了多个线程间的通信,线程 0 获取锁,先执行,线程 1 等待,线程 0 释放锁,线程 1 继续执行。

synchronized 是一种语法级别的同步方式,称为内置锁。该锁会在代码执行完毕后由 JVM 释放。

输出结果跟 ReentrantLock 一样。

Java 中的 Object 类默认是所有类的父类,该类拥有 wait、 notify、notifyAll 方法,其他对象会自动继承 Object 类,可调用 Object 类的这些方法实现线程间的通信。

除了可以通过锁的方式来实现通信,还可通过无锁的方式来实现,无锁同 CAS(Compare-and-Swap,比较和交换)的实现,需要有 3 个操作数:内存地址 V,旧的预期值 A,即将要更新的目标值 B,当且仅当内存地址 V 的值与预期值 A 相等时,将内存地址 V 的值修改为目标值 B,否则就什么都不做。

我们通过计算器的案例来演示无锁同步 CAS 的实现方式,非线程安全的计数方式如下:

线程安全的计数方式如下:

运行结果:

线程安全累加的结果才是正确的,非线程安全会出现少计算值的情况。JDK 15 开始,并发包里提供了原子操作的类,AtomicBoolean 用原子方式更新的 boolean 值,AtomicInteger 用原子方式更新 int 值,AtomicLong 用原子方式更新 long 值。 AtomicInteger 和 AtomicLong 还提供了用原子方式将当前值自增 1 或自减 1 的方法,在多线程程序中,诸如 ++i 或 i++ 等运算不具有原子性,是不安全的线程操作之一。 通常我们使用 synchronized 将该操作变成一个原子操作,但 JVM 为此种操作提供了原子操作的同步类 Atomic,使用 AtomicInteger 做自增运算的性能是 ReentantLock 的好几倍。

上面我们都是使用底层的方式实现线程间的通信的,但在实际的开发中,我们应该尽量远离底层结构,使用封装好的 API,例如 JUC 包(javautilconcurrent,又称并发包)下的工具类 CountDownLath、CyclicBarrier、Semaphore,来实现线程通信,协调线程执行。

CountDownLatch 能够实现线程之间的等待,CountDownLatch 用于某一个线程等待若干个其他线程执行完任务之后,它才开始执行。

CountDownLatch 类只提供了一个构造器:

CountDownLatch 类中常用的 3 个方法:

运行结果:

CyclicBarrier 字面意思循环栅栏,通过它可以让一组线程等待至某个状态之后再全部同时执行。当所有等待线程都被释放以后,CyclicBarrier 可以被重复使用,所以有循环之意。

相比 CountDownLatch,CyclicBarrier 可以被循环使用,而且如果遇到线程中断等情况时,可以利用 reset() 方法,重置计数器,CyclicBarrier 会比 CountDownLatch 更加灵活。

CyclicBarrier 提供 2 个构造器:

上面的方法中,参数 parties 指让多少个线程或者任务等待至 barrier 状态;参数 barrierAction 为当这些线程都达到 barrier 状态时会执行的内容。

CyclicBarrier 中最重要的方法 await 方法,它有 2 个重载版本。下面方法用来挂起当前线程,直至所有线程都到达 barrier 状态再同时执行后续任务。

而下面的方法则是让这些线程等待至一定的时间,如果还有线程没有到达 barrier 状态就直接让到达 barrier 的线程执行任务。

运行结果:

CyclicBarrier 用于一组线程互相等待至某个状态,然后这一组线程再同时执行,CountDownLatch 是不能重用的,而 CyclicBarrier 可以重用。

Semaphore 类是一个计数信号量,它可以设定一个阈值,多个线程竞争获取许可信号,执行完任务后归还,超过阈值后,线程申请许可信号时将会被阻塞。Semaphore 可以用来 构建对象池,资源池,比如数据库连接池。

假如在服务器上运行着若干个客户端请求的线程。这些线程需要连接到同一数据库,但任一时刻只能获得一定数目的数据库连接。要怎样才能够有效地将这些固定数目的数据库连接分配给大量的线程呢?

给方法加同步锁,保证同一时刻只能有一个线程去调用此方法,其他所有线程排队等待,但若有 10 个数据库连接,也只有一个能被使用,效率太低。另外一种方法,使用信号量,让信号量许可与数据库可用连接数为相同数量,10 个数据库连接都能被使用,大大提高性能。

上面三个工具类是 JUC 包的核心类,JUC 包的全景图就比较复杂了:

JUC 包(javautilconcurrent)中的高层类(Lock、同步器、阻塞队列、Executor、并发容器)依赖基础类(AQS、非阻塞数据结构、原子变量类),而基础类是通过 CAS 和 volatile 来实现的。我们尽量使用顶层的类,避免使用基础类 CAS 和 volatile 来协调线程的执行。JUC 包其他的内容,在其他的篇章会有相应的讲解。

Future 是一种异步执行的设计模式,类似 ajax 异步请求,不需要同步等待返回结果,可继续执行代码。使 Runnable(无返回值不支持上报异常)或 Callable(有返回值支持上报异常)均可开启线程执行任务。但是如果需要异步获取线程的返回结果,就需要通过 Future 来实现了。

Future 是位于 javautilconcurrent 包下的一个接口,Future 接口封装了取消任务,获取任务结果的方法。

在 Java 中,一般是通过继承 Thread 类或者实现 Runnable 接口来创建多线程, Runnable 接口不能返回结果,JDK 15 之后,Java 提供了 Callable 接口来封装子任务,Callable 接口可以获取返回结果。我们使用线程池提交 Callable 接口任务,将返回 Future 接口添加进 ArrayList 数组,最后遍历 FutureList,实现异步获取返回值。

运行结果:

上面就是异步线程执行的调用过程,实际开发中用得更多的是使用现成的异步框架来实现异步编程,如 RxJava,有兴趣的可以继续去了解,通常异步框架都是结合远程 HTTP 调用 Retrofit 框架来使用的,两者结合起来用,可以避免调用远程接口时,花费过多的时间在等待接口返回上。

线程封闭是通过本地线程 ThreadLocal 来实现的,ThreadLocal 是线程局部变量(local vari able),它为每个线程都提供一个变量值的副本,每个线程对该变量副本的修改相互不影响。

在 JVM 虚拟机中,堆内存用于存储共享的数据(实例对象),也就是主内存。Thread Local set()、ThreadLocalget() 方法直接在本地内存(工作内存)中写和读共享变量的副本,而不需要同步数据,不用像 synchronized 那样保证数据可见性,修改主内存数据后还要同步更新到工作内存。

Myabatis、hibernate 是通过 threadlocal 来存储 session 的,每一个线程都维护着一个 session,对线程独享的资源操作很方便,也避免了线程阻塞。

ThreadLocal 类位于 Thread 线程类内部,我们分析下它的源码:

ThreadLocal 和 Synchonized 都用于解决多线程并发访问的问题,访问多线程共享的资源时,Synchronized 同步机制采用了以时间换空间的方式,提供一份变量让多个线程排队访问,而 ThreadLocal 采用了以空间换时间的方式,提供每个线程一个变量,实现数据隔离。

ThreadLocal 可用于数据库连接 Connection 对象的隔离,使得每个请求线程都可以复用连接而又相互不影响。

在 Java 里面,存在强引用、弱引用、软引用、虚引用。我们主要来了解下强引用和弱引用:

上面 a、b 对实例 A、B 都是强引用

而上面这种情况就不一样了,即使 b 被置为 null,但是 c 仍然持有对 C 对象实例的引用,而间接的保持着对 b 的强引用,所以 GC 不会回收分配给 b 的空间,导致 b 无法回收也没有被使用,造成了内存泄漏。这时可以通过 c = null; 来使得 c 被回收,但也可以通过弱引用来达到同样目的:

从源码中可以看出 Entry 里的 key 对 ThreadLocal 实例是弱引用:

Entry 里的 key 对 ThreadLocal 实例是弱引用,将 key 值置为 null,堆中的 ThreadLocal 实例是可以被垃圾收集器(GC)回收的。但是 value 却存在一条从 Current Thread 过来的强引用链,只有当当前线程 Current Thread 销毁时,value 才能被回收。在 threadLocal 被设为 null 以及线程结束之前,Entry 的键值对都不会被回收,出现内存泄漏。为了避免泄漏,在 ThreadLocalMap 中的 set/get Entry 方法里,会对 key 为 null 的情况进行判断,如果为 null 的话,就会对 value 置为 null。也可以通过 ThreadLocal 的 remove 方法(类似加锁和解锁,最后 remove 一下,解锁对象的引用)直接清除,释放内存空间。

总结来说,利用 ThreadLocal 来访问共享数据时,JVM 通过设置 ThreadLocalMap 的 Key 为弱引用,来避免内存泄露,同时通过调用 remove、get、set 方法的时候,回收弱引用(Key 为 null 的 Entry)。当使用 static ThreadLocal 的时候(如上面的 Spring 多数据源),static 变量在类未加载的时候,它就已经加载,当线程结束的时候,static 变量不一定会被回收,比起普通成员变量使用的时候才加载,static 的生命周期变长了,若没有及时回收,容易产生内存泄漏。

使用线程池,可以重用存在的线程,减少对象创建、消亡的开销,可控制最大并发线程数,避免资源竞争过度,还能实现线程定时执行、单线程执行、固定线程数执行等功能。

Java 把线程的调用封装成了一个 Executor 接口,Executor 接口中定义了一个 execute 方法,用来提交线程的执行。Executor 接口的子接口是 ExecutorService,负责管理线程的执行。通过 Executors 类的静态方法可以初始化

ExecutorService 线程池。Executors 类的静态方法可创建不同类型的线程池:

但是,不建议使用 Executors 去创建线程池,而是通过 ThreadPoolExecutor 的方式,明确给出线程池的参数去创建,规避资源耗尽的风险。

如果使用 Executors 去创建线程池:

最佳的实践是通过 ThreadPoolExecutor 手动地去创建线程池,选取合适的队列存储任务,并指定线程池线程大小。通过线程池实现类 ThreadPoolExecutor 可构造出线程池的,构造函数有下面几个重要的参数:

参数 1:corePoolSize

线程池核心线程数。

参数 2:workQueue

阻塞队列,用于保存执行任务的线程,有 4 种阻塞队列可选:

参数 3:maximunPoolSize

线程池最大线程数。如果阻塞队列满了(有界的阻塞队列),来了一个新的任务,若线程池当前线程数小于最大线程数,则创建新的线程执行任务,否则交给饱和策略处理。如果是无界队列就不存在这种情况,任务都在无界队列里存储着。

参数 4:RejectedExecutionHandler

拒绝策略,当队列满了,而且线程达到了最大线程数后,对新任务采取的处理策略。

有 4 种策略可选:

最后,还可以自定义处理策略。

参数 5:ThreadFactory

创建线程的工厂。

参数 6:keeyAliveTime

线程没有任务执行时最多保持多久时间终止。当线程池中的线程数大于 corePoolSize 时,线程池中所有线程中的某一个线程的空闲时间若达到 keepAliveTime,则会终止,直到线程池中的线程数不超过 corePoolSize。但如果调用了 allowCoreThread TimeOut(boolean value) 方法,线程池中的线程数就算不超过 corePoolSize,keepAlive Time 参数也会起作用,直到线程池中的线程数量变为 0。

参数 7:TimeUnit

配合第 6 个参数使用,表示存活时间的时间单位最佳的实践是通过 ThreadPoolExecutor 手动地去创建线程池,选取合适的队列存储任务,并指定线程池线程大小。

运行结果:

线程池创建线程时,会将线程封装成工作线程 Worker,Worker 在执行完任务后,还会不断的去获取队列里的任务来执行。Worker 的加锁解锁机制是继承 AQS 实现的。

我们来看下 Worker 线程的运行过程:

总结来说,如果当前运行的线程数小于 corePoolSize 线程数,则获取全局锁,然后创建新的线程来执行任务如果运行的线程数大于等于 corePoolSize 线程数,则将任务加入阻塞队列 BlockingQueue 如果阻塞队列已满,无法将任务加入 BlockingQueue,则获取全局所,再创建新的线程来执行任务

如果新创建线程后使得线程数超过了 maximumPoolSize 线程数,则调用 Rejected ExecutionHandlerrejectedExecution() 方法根据对应的拒绝策略处理任务。

CPU 密集型任务,线程执行任务占用 CPU 时间会比较长,应该配置相对少的线程数,避免过度争抢资源,可配置 N 个 CPU+1 个线程的线程池;但 IO 密集型任务则由于需要等待 IO 操作,线程经常处于等待状态,应该配置相对多的线程如 2N 个 CPU 个线程,A 线程阻塞后,B 线程能马上执行,线程多竞争激烈,能饱和的执行任务。线程提交 SQL 后等待数据库返回结果时间较长的情况,CPU 空闲会较多,线程数应设置大些,让更多线程争取 CPU 的调度。

这个问题有点搞笑!!!

用户多,不代表你服务器访问量大,访问量大不一定你服务器压力大!我们换成专业点的问题,高并发下怎么优化能避免服务器压力过大?

1,整个架构:可采用分布式架构,利用微服务架构拆分服务部署在不同的服务节点,避免单节点宕机引起的服务不可用!

2,数据库:采用主从复制,读写分离,甚至是分库分表,表数据根据查询方式的不同采用不同的索引比如btree,hash,关键字段加索引,sql避免复合函数,避免组合排序等,避免使用非索引字段作为条件分组,排序等!减少交互次数,一定不要用select!

3,加缓存:使用诸如memcache,redis,ehcache等缓存数据库定义表,结果表等等,数据库的中间数据放缓存,避免多次访问修改表数据!登录信息session等放缓存实现共享!诸如商品分类,省市区,年龄分类等不常改变的数据,放缓存,不要放数据库!

同时要避免缓存雪崩和穿透等问题的出现导致缓存崩溃!

4,增量统计:不要实时统计大量的数据,应该采用晚间定时任务统计,增量统计等方式提前进行统计,避免实时统计的内存,CPU压力!

5,加服务器:等大文件,一定要单独经过文件服务器,避免IO速度对动态数据的影响!保证系统不会因为文件而崩溃!

6,HTML文件,枚举,静态的方法返回值等静态化处理,放入缓存!

7,负载均衡:使用nginx等对访问量过大的服务采用负载均衡,实现服务集群,提高服务的最大并发数,防止压力过大导致单个服务的崩溃!

8,加入搜索引擎:对于sql中常出现的like,in等语句,使用lucence或者solr中间件,将必要的,依赖模糊搜索的字段和数据使用搜索引擎进行存储,提升搜索速度!#注意:全量数据和增量数据进行定时任务更新!

9,使用消息中间件:对服务之间的数据传输,使用诸如rabbitmq,kafka等等分布式消息队列异步传输,防止同步传输数据的阻塞和数据丢失!

10,抛弃tomcat:做web开发,接触最早的应用服务器就是tomcat了,但是tomcat的单个最大并发量只能不到1w!采取netty等actor模型的高性能应用服务器!

11,多线程:现在的服务器都是多核心处理模式,如果代码采用单线程,同步方式处理,极大的浪费了CPU使用效率和执行时间!

12,避免阻塞:避免bio,blockingqueue等常常引起长久阻塞的技术,而改为nio等异步处理机制!

13,CDN加速:如果访问量实在过大,可根据请求来源采用CDN分流技术,避免大流量完成系统崩溃!

14,避免低效代码:不要频繁创建对象,引用,少用同步锁,不要创建大量线程,不要多层for循环!

还有更多的细节优化技术,暂时想不起来了!

有什么方法衡量服务器并发处理能力

1 吞吐率

吞吐率,单位时间里服务器处理的最大请求数,单位req/s

从服务器角度,实际并发用户数的可以理解为服务器当前维护的代表不同用户的文件描述符总数,也就是并发连接数。服务器一般会限制同时服务的最多用户数,比如apache的MaxClents参数。

这里再深入一下,对于服务器来说,服务器希望支持高吞吐率,对于用户来说,用户只希望等待最少的时间,显然,双方不能满足,所以双方利益的平衡点,就是我们希望的最大并发用户数。

2 压力测试

有一个原理一定要先搞清楚,假如100个用户同时向服务器分别进行10个请求,与1个用户向服务器连续进行1000次请求,对服务器的压力是一样吗?实际上是不一样的,因对每一个用户,连续发送请求实际上是指发送一个请求并接收到响应数据后再发送下一个请求。这样对于1个用户向服务器连续进行1000次请求, 任何时刻服务器的网卡接收缓冲区中只有1个请求,而对于100个用户同时向服务器分别进行10个请求,服务器的网卡接收缓冲区最多有100个等待处理的请求,显然这时的服务器压力更大。

压力测试前提考虑的条件

并发用户数: 指在某一时刻同时向服务器发送请求的用户总数(HttpWatch)

总请求数

请求资源描述

请求等待时间(用户等待时间)

用户平均请求的等待时间

服务器平均请求处理的时间

硬件环境

压力测试中关心的时间又细分以下2种:

用户平均请求等待时间(这里暂不把数据在网络的传输时间,还有用户PC本地的计算时间计算入内)

服务器平均请求处理时间

用户平均请求等待时间主要用于衡量服务器在一定并发用户数下,单个用户的服务质量;而服务器平均请求处理时间就是吞吐率的倒数,一般来说,用户平均请求等待时间 = 服务器平均请求处理时间 并发用户数

怎么提高服务器的并发处理能力

1 提高CPU并发计算能力

服务器之所以可以同时处理多个请求,在于操作系统通过多执行流体系设计使得多个任务可以轮流使用系统资源,这些资源包括CPU,内存以及I/O 这里的I/O主要指磁盘I/O, 和网络I/O。

多进程 & 多线程

多执行流的一般实现便是进程,多进程的好处可以对CPU时间的轮流使用,对CPU计算和IO操作重叠利用。这里的IO主要是指磁盘IO和网络IO,相对CPU而言,它们慢的可怜。

而实际上,大多数进程的时间主要消耗在I/O操作上。现代计算机的DMA技术可以让CPU不参与I/O操作的全过程,比如进程通过系统调用,使得CPU向网卡或者磁盘等I/O设备发出指令,然后进程被挂起,释放出CPU资源,等待I/O设备完成工作后通过中断来通知进程重新就绪。对于单任务而言,CPU大部分时间空闲,这时候多进程的作用尤为重要。

多进程不仅能够提高CPU的并发度。其优越性还体现在独立的内存地址空间和生命周期所带来的稳定性和健壮性,其中一个进程崩溃不会影响到另一个进程。

但是进程也有如下缺点:

fork()系统调用开销很大: prefork

进程间调度和上下文切换成本: 减少进程数量

庞大的内存重复:共享内存

IPC编程相对比较麻烦

应用服务器的性能分析是复杂的,关注点很多。比如典型场景Web服务器+数据库,底层网络链路和网络硬件性能姑且不论,单看:Web服务器对静态文件的读写与磁盘和文件系统IO性能紧密相关;对数据的处理和数据库性能相关;而高并发访问则关系到操作系统的线程、网络套接字以及异步网络模型的效率。

在数据量大的情况下,数据库的性能成为一个至关重要的因素,随之带来Web服务器等待数据库的时间。在此基础上如果有大量的用户同时访问,那么会对Web服务器带来什么样的影响?以下主要讨论这个问题。

对于并发访问的处理,一般有两种处理机制:异步非阻塞机制、多线程阻塞机制(介绍略)。在测试选择上,前者使用基于Python的Tornado服务器,而后者使用基于Java的Tomcat服务器。注意:本文并非讨论开发语言的优劣,事实上,新版本的Java也支持异步机制,甚至高性能的epoll等。

测试工具:变态级的http_load

测试方法:使用该工具模拟1、10、100、1000个客户端并发访问以下场景,每次测试时间1分钟,得到服务器端每秒的总响应数。注意:由于Tomcat最大线程的限制(下面有提到)以及操作系统对端口数量的限制,1000个并发已经能够得到明显的结论了。

测试场景:

静态文件的读写。一个html文件和一大一小两个,大小分别为676k、16M和12k,使用http_load工具随机读取。静态文件读写的耗时可以忽略不计的。

模拟一个耗时操作,比如数据库操作。注意:耗时操作并不占用Web服务器本身的资源,它更多地体现的是Web服务器对并发访问处理的“合理”性。

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » 飞猪抢票加钱成功率高吗

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情