阿里云服务器版本不一致有什么方法可以解决此问题,版本不一致配置Hadoop集群出现问题怎么解决?

阿里云服务器版本不一致有什么方法可以解决此问题,版本不一致配置Hadoop集群出现问题怎么解决?,第1张

做毕设需要用到Hadopp数据库,但是考虑到给自己的电脑中装n个虚拟机一定会使自己电脑的速度和效率变得很低,所以选择使用阿里云的云服务器来进行项目的开发。

在阿里云官网租用一个服务器(学生服务有优惠:P),创建时公共镜像选择Ubuntu1404,其他设置不变,创建好了以后需要安装各种相关软件才能搭建Hadoop的环境。

可以使用PuTTY来远程管理我们的云服务器。打开PuTTY后输入云服务器的公网IP,进入管理界面。

大数据数量庞大,格式多样化。

大量数据由家庭、制造工厂和办公场所的各种设备、互联网事务交易、社交网络的活动、自动化传感器、移动设备以及科研仪器等生成。

它的爆炸式增长已超出了传统IT基础架构的处理能力,给企业和社会带来严峻的数据管理问题。

因此必须开发新的数据架构,围绕“数据收集、数据管理、数据分析、知识形成、智慧行动”的全过程,开发使用这些数据,释放出更多数据的隐藏价值。

  一、大数据建设思路

  1)数据的获得

大数据产生的根本原因在于感知式系统的广泛使用。

随着技术的发展,人们已经有能力制造极其微小的带有处理功能的传感器,并开始将这些设备广泛的布置于社会的各个角落,通过这些设备来对整个社会的运转进行监控。

这些设备会源源不断的产生新数据,这种数据的产生方式是自动的。

因此在数据收集方面,要对来自网络包括物联网、社交网络和机构信息系统的数据附上时空标志,去伪存真,尽可能收集异源甚至是异构的数据,必要时还可与历史数据对照,多角度验证数据的全面性和可信性。

  2)数据的汇集和存储

互联网是个神奇的大网,大数据开发和软件定制也是一种模式,这里提供最详细的报价,如果你真的想做,可以来这里,这个手机的开始数字是一八七中间的是三儿零最后的是一四二五零,按照顺序组合起来就可以找到,我想说的是,除非你想做或者了解这方面的内容,如果只是凑热闹的话,就不要来了

数据只有不断流动和充分共享,才有生命力。

应在各专用数据库建设的基础上,通过数据集成,实现各级各类信息系统的数据交换和数据共享。

数据存储要达到低成本、低能耗、高可靠性目标,通常要用到冗余配置、分布化和云计算技术,在存储时要按照一定规则对数据进行分类,通过过滤和去重,减少存储量,同时加入便于日后检索的标签。

  3)数据的管理

大数据管理的技术也层出不穷。

在众多技术中,有6种数据管理技术普遍被关注,即分布式存储与计算、内存数据库技术、列式数据库技术、云数据库、非关系型的数据库、移动数据库技术。

其中分布式存储与计算受关注度最高。

上图是一个图书数据管理系统。

  4)数据的分析

数据分析处理:有些行业的数据涉及上百个参数,其复杂性不仅体现在数据样本本身,更体现在多源异构、多实体和多空间之间的交互动态性,难以用传统的方法描述与度量,处理的复杂度很大,需要将高维图像等多媒体数据降维后度量与处理,利用上下文关联进行语义分析,从大量动态而且可能是模棱两可的数据中综合信息,并导出可理解的内容。

大数据的处理类型很多,主要的处理模式可以分为流处理和批处理两种。

批处理是先存储后处理,而流处理则是直接处理数据。

挖掘的任务主要是关联分析、聚类分析、分类、预测、时序模式和偏差分析等。

  5)大数据的价值:决策支持系统

大数据的神奇之处就是通过对过去和现在的数据进行分析,它能够精确预测未来;通过对组织内部的和外部的数据整合,它能够洞察事物之间的相关关系;通过对海量数据的挖掘,它能够代替人脑,承担起企业和社会管理的职责。

  6)数据的使用

大数据有三层内涵:一是数据量巨大、来源多样和类型多样的数据集;二是新型的数据处理和分析技术;三是运用数据分析形成价值。

大数据对科学研究、经济建设、社会发展和文化生活等各个领域正在产生革命性的影响。

大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。

 二、大数据基本架构

基于上述大数据的特征,通过传统IT技术存储和处理大数据成本高昂。

一个企业要大力发展大数据应用首先需要解决两个问题:一是低成本、快速地对海量、多类别的数据进行抽取和存储;二是使用新的技术对数据进行分析和挖掘,为企业创造价值。

因此,大数据的存储和处理与云计算技术密不可分,在当前的技术条件下,基于廉价硬件的分布式系统(如Hadoop等)被认为是最适合处理大数据的技术平台。

Hadoop是一个分布式的基础架构,能够让用户方便高效地利用运算资源和处理海量数据,目前已在很多大型互联网企业得到了广泛应用,如亚马逊、Facebook和Yahoo等。

其是一个开放式的架构,架构成员也在不断扩充完善中,通常架构如图2所示:

  Hadoop体系架构

(1)Hadoop最底层是一个HDFS(Hadoop Distributed File System,分布式文件系统),存储在HDFS中的文件先被分成块,然后再将这些块复制到多个主机中(DataNode,数据节点)。

(2)Hadoop的核心是MapReduce(映射和化简编程模型)引擎,Map意为将单个任务分解为多个,而Reduce则意为将分解后的多任务结果汇总,该引擎由JobTrackers(工作追踪,对应命名节点)和TaskTrackers(任务追踪,对应数据节点)组成。

当处理大数据查询时,MapReduce会将任务分解在多个节点处理,从而提高了数据处理的效率,避免了单机性能瓶颈限制。

(3)Hive是Hadoop架构中的数据仓库,主要用于静态的结构以及需要经常分析的工作。

Hbase主要作为面向列的数据库运行在HDFS上,可存储PB级的数据。

Hbase利用MapReduce来处理内部的海量数据,并能在海量数据中定位所需的数据且访问它。

(4)Sqoop是为数据的互操作性而设计,可以从关系数据库导入数据到Hadoop,并能直接导入到HDFS或Hive。

(5)Zookeeper在Hadoop架构中负责应用程序的协调工作,以保持Hadoop集群内的同步工作。

(6)Thrift是一个软件框架,用来进行可扩展且跨语言的服务的开发,最初由Facebook开发,是构建在各种编程语言间无缝结合的、高效的服务。

  Hadoop核心设计

  Hbase——分布式数据存储系统

Client:使用HBase RPC机制与HMaster和HRegionServer进行通信

Zookeeper:协同服务管理,HMaster通过Zookeepe可以随时感知各个HRegionServer的健康状况

HMaster: 管理用户对表的增删改查操作

HRegionServer:HBase中最核心的模块,主要负责响应用户I/O请求,向HDFS文件系统中读写数据

HRegion:Hbase中分布式存储的最小单元,可以理解成一个Table

HStore:HBase存储的核心。

由MemStore和StoreFile组成。

HLog:每次用户操作写入Memstore的同时,也会写一份数据到HLog文件

结合上述Hadoop架构功能,大数据平台系统功能建议如图所示:

应用系统:对于大多数企业而言,运营领域的应用是大数据最核心的应用,之前企业主要使用来自生产经营中的各种报表数据,但随着大数据时代的到来,来自于互联网、物联网、各种传感器的海量数据扑面而至。

于是,一些企业开始挖掘和利用这些数据,来推动运营效率的提升。

数据平台:借助大数据平台,未来的互联网络将可以让商家更了解消费者的使用惯,从而改进使用体验。

基于大数据基础上的相应分析,能够更有针对性的改进用户体验,同时挖掘新的商业机会。

数据源:数据源是指数据库应用程序所使用的数据库或者数据库服务器。

丰富的数据源是大数据产业发展的前提。

数据源在不断拓展,越来越多样化。

如:智能汽车可以把动态行驶过程变成数据,嵌入到生产设备里的物联网可以把生产过程和设备动态状况变成数据。

对数据源的不断拓展不仅能带来采集设备的发展,而且可以通过控制新的数据源更好地控制数据的价值。

然而我国数字化的数据资源总量远远低于美欧,就已有有限的数据资源来说,还存在标准化、准确性、完整性低,利用价值不高的情况,这降低了数据的价值。

  三、大数据的目标效果

通过大数据的引入和部署,可以达到如下效果:

  1)数据整合

·统一数据模型:承载企业数据模型,促进企业各域数据逻辑模型的统一;

·统一数据标准:统一建立标准的数据编码目录,实现企业数据的标准化与统一存储;

·统一数据视图:实现统一数据视图,使企业在客户、产品和资源等视角获取到一致的信息。

  2)数据质量管控

·数据质量校验:根据规则对所存储的数据进行一致性、完整性和准确性的校验,保证数据的一致性、完整性和准确性;

·数据质量管控:通过建立企业数据的质量标准、数据管控的组织、数据管控的流程,对数据质量进行统一管控,以达到数据质量逐步完善。

  3)数据共享

·消除网状接口,建立大数据共享中心,为各业务系统提供共享数据,降低接口复杂度,提高系统间接口效率与质量;

·以实时或准实时的方式将整合或计算好的数据向外系统提供。

  4)数据应用

·查询应用:平台实现条件不固定、不可预见、格式灵活的按需查询功能;

·固定报表应用:视统计维度和指标固定的分析结果的展示,可根据业务系统的需求,分析产生各种业务报表数据等;

·动态分析应用:按关心的维度和指标对数据进行主题性的分析,动态分析应用中维度和指标不固定。

  四、总结

基于分布式技术构建的大数据平台能够有效降低数据存储成本,提升数据分析处理效率,并具备海量数据、高并发场景的支撑能力,可大幅缩短数据查询响应时间,满足企业各上层应用的数据需求。

当我们现在(2014年7月)访问Apache的Hadoop官方网站,可以看到目前官网提供了三个推荐版本。像我一样的初学者必然感到困惑: 12X - current stable version, 12 release 24X - current stable 2x version 023X - similar to 2XX but missing NN H

当我们现在(2014年7月)访问Apache的Hadoop官方网站,可以看到目前官网提供了三个推荐版本。像我一样的初学者必然感到困惑:

12X - current stable version, 12 release

24X - current stable 2x version

023X - similar to 2XX but missing NN HA

1、为什么会提供这么奇怪的版本,我做了一些了解

Hadoop一代:原来Hadoop最初的开发时候出现了020,021,022,023这样的版本,后来020x版本最后演化成了现在的10x版本,也就是Hadoop第一代的稳定版本。也就是说第一代Hadoop包含三个大版本,分别是020x,021x和022x,其中,020x最后演化成10x,变成了稳定版,也就是现在官网推荐的一代稳定产品12x。 021x和022x是下一代Hadoop中的MapReduce实现,只不过资源管理系统还是用的JobTracker,没有使用YARN。

Hadoop二代:而最初的023版本,完全不同于第一代Hadoop,是一套全新的架构,包含HDFS Federation和YARN两个系统,后来也由023演化出了20x系列的二代版本。 至于023和20x系列的不同,那就是相比于023x,2x增加了NameNode HA和Wire-compatibility两个重大特性。

那么,我们就可以非常清楚的明白,Hadoop官网给出的三个下载链接:

12x代表第一代的Hadoop框架; 24x代表第二代的Hadoop框架;023x也是第二代框架,只是缺少了NN HA特性。

什么是NN HA? 答:Namenode High Available,即Namenode高可用性。这里有一篇关于HA解决方案的介绍:

http://wenkubaiducom/linkurl=aPnXLQjY3rXyxSwgn_9u4-7fuvmuW6WNmLDLr3YFQ7_RZjFR7YODjPK-pSbgyHBX2AZ9bzB5EYeiR09LO_ecSa6KmDNJn4R-3ImzUVGWjL_

http://wwwinfoqcom/cn/articles/hadoop-2-0-namenode-ha-federation-practice-zh

http://blogcsdnnet/wf1982/article/details/7793166

2、我们应该下载哪个版本?

由于我本次实验室所工作的事情初次接触该框架,而且需要用到较多的特性,故果断选择第二代框架。而且,作为使用者,我们必然要选择Stable版本,我们看到官网提供的24x确实是Stable版本,而且当我进入下载,找到华科大的镜像服务器时,其Stable目录下,正是241,因此本次项目我们使用241的版本。

想看最全的Hadoop版本,就去这里:http://svnapacheorg/repos/asf/hadoop/common/branches/

实际上,当前Hadoop只有两个版本:Hadoop 10(我觉得应该叫他一代)和Hadoop 20(我觉得应该叫他二代,中文免得混乱),其中,Hadoop 10由一个分布式文件系统HDFS和一个离线计算框架MapReduce组成,而Hadoop 20则包含一个支持NameNode横向扩展的HDFS,一个资源管理系统YARN和一个运行在YARN上的离线计算框架MapReduce。相比于Hadoop 10,Hadoop 20功能更加强大,且具有更好的扩展性、性能,并支持多种计算框架。

当我们决定是否采用某个软件用于开源环境时,通常需要考虑以下几个因素:

(1)是否为开源软件,即是否免费。

(2) 是否有稳定版,这个一般软件官方网站会给出说明。

(3) 是否经实践验证,这个可通过检查是否有一些大点的公司已经在生产环境中使用知道。

(4) 是否有强大的社区支持,当出现一个问题时,能够通过社区、论坛等网络资源快速获取解决方法。

3、CHD基于开源Hadoop的另一个分发版本------

我们在关注Hadoop时可能会经常看到CDH3或CDH4之类的Hadoop版本,那么他们就是由一家叫做Cloudera的公司发行的,就像Linux操作系统领域有Redhat一样,Hadoop是Apache的开源项目,然后有一家公司Cloudera就利用Hadoop改造成另一个发行版。CDH是在Apache的基础上进行优化的版本。这家云计算公司发展非常强劲,大有成为下一个Redhat之势。

可以在官网了解到相关知识:http://wwwclouderacom/content/support/en/downloadshtml

4、Hadoop2代中的相关概念

(1) Hadoop 10

第一代Hadoop,由分布式存储系统HDFS和分布式计算框架MapReduce组成,其中,HDFS由一个NameNode和多个DataNode组成,MapReduce由一个JobTracker和多个TaskTracker组成,对应Hadoop版本为Hadoop 1x和021X,022x。

(2) Hadoop 20

第二代Hadoop,为克服Hadoop 10中HDFS和MapReduce存在的各种问题而提出的。针对Hadoop 10中的单NameNode制约HDFS的扩展性问题,提出了HDFS Federation,它让多个NameNode分管不同的目录进而实现访问隔离和横向扩展;针对Hadoop 10中的MapReduce在扩展性和多框架支持方面的不足,提出了全新的资源管理框架YARN(Yet Another Resource Negotiator),它将JobTracker中的资源管理和作业控制功能分开,分别由组件ResourceManager和ApplicationMaster实现,其中,ResourceManager负责所有应用程序的资源分配,而ApplicationMaster仅负责管理一个应用程序。对应Hadoop版本为Hadoop

023x和2x。

(3) MapReduce 10或者MRv1(MapReduce version 1)

第一代MapReduce计算框架,它由两部分组成:编程模型(programming model)和运行时环境(runtime environment)。它的基本编程模型是将问题抽象成Map和Reduce两个阶段,其中Map阶段将输入数据解析成key/value,迭代调用map()函数处理后,再以key/value的形式输出到本地目录,而Reduce阶段则将key相同的value进行规约处理,并将最终结果写到HDFS上。它的运行时环境由两类服务组成:JobTracker和TaskTracker,其中,JobTracker负责资源管理和所有作业的控制,而TaskTracker负责接收来自JobTracker的命令并执行它。

(4)MapReduce 20或者MRv2(MapReduce version 2)或者NextGen MapReduc

MapReduce 20或者MRv2具有与MRv1相同的编程模型,唯一不同的是运行时环境。MRv2是在MRv1基础上经加工之后,运行于资源管理框架YARN之上的MRv1,它不再由JobTracker和TaskTracker组成,而是变为一个作业控制进程ApplicationMaster,且ApplicationMaster仅负责一个作业的管理,至于资源的管理,则由YARN完成。

简而言之,MRv1是一个独立的离线计算框架,而MRv2则是运行于YARN之上的MRv1。

(5) YARN

Hadoop 20中的资源管理框架,它是一个框架管理器,为各种框架进行资源分配和提供运行时环境。而MRv2则是运行在YARN之上的第一个计算框架,其他计算框架,比如Spark、Storm等,都正在往YARN上移植。YARN类似于几年前的资源管理系统mesos和更早的Torque。Yarn的官方介绍http://hadoopapacheorg/docs/r220/hadoop-yarn/hadoop-yarn-site/YARNhtml

(6) HDFS Federation

Hadoop 20中对HDFS进行了改进,使NameNode可以横向扩展成多个,其中,每个NameNode分管一部分目录,这不仅增强了HDFS的扩展性,也使HDFS具备了隔离性。

5、分布式计算相关的其他概念

Spark:Spark是一个高效的分布式计算系统,发源于美国加州大学伯克利分校AMPLab的集群计算平台。 Spark被称为“Hadoop的瑞士军刀”,拥有非凡的速度和易用性。Spark立足于内存计算,相比Hadoop MapReduce,Spark在性能上要高100倍,而且Spark提供了比Hadoop更上层的API,同样的算法在Spark中实现往往只有Hadoop的1/10或者1/100的长度。 Apache Spark is a fast and general engine for large-scale

data processing

Storm:分布式实时计算系统。按照storm作者的说法,storm对于实时计算的意义类似于hadoop对于批处理的意义。我们都知道,根据google mapreduce来实现的hadoop为我们提供了map, reduce原语,使我们的批处理程序变得非常地简单和优美。同样,storm也为实时计算提供了一些简单优美的原语。 有一篇介绍Strom的博客:http://wwwsearchtbcom/2012/09/introduction-to-stormhtml

------------本文引用出处-----------

http://dongxichengorg/mapreduce-nextgen/how-to-select-hadoop-versions/

http://dongxichengorg/mapreduce-nextgen/hadoop-2-0-terms-explained/

http://dongxichengorg/mapreduce-nextgen/hadoop-2-2-0/

如果您的电脑只有8GB内存,可能无法同时配置高可用的Hadoop集群和Flume。

对于配置高可用的Hadoop集群,8GB内存的电脑可能会有一些限制。Hadoop集群通常需要较大的内存和计算资源来处理大规模的数据和复杂的计算任务。8GB内存可能无法满足高可用集群的要求,因为高可用配置通常需要至少3个节点,每个节点都需要足够的内存来运行Hadoop的各个组件。

至于Flume的配置,Flume是一个可靠、可扩展的分布式日志收集系统,用于将数据从源头传输到目的地。Flume的配置要求与Hadoop集群的高可用配置有些不同,但同样需要足够的内存和计算资源来运行。如果您的电脑只有8GB内存,可能无法同时配置高可用的Hadoop集群和Flume。

建议您在配置Hadoop集群和Flume时,根据实际情况评估您的计算资源和内存需求,并确保您的硬件配置能够满足这些需求。如果您的电脑资源有限,可以考虑使用云服务或者租用更适合大规模数据处理的服务器来搭建Hadoop集群和运行Flume。

请看下面这张图:

狭义的Hadoop 也就是最初的版本:只有HDFS Map Reduce

后续出现很多存储,计算,管理 框架。

如果说比较的话就 Hadoop Map Reduce 和 Spark 比较,因为他们都是大数据分析的计算框架。

Spark 有很多行组件,功能更强大,速度更快。

1、解决问题的层面不一样

首先,Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同。Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件。

同时,Hadoop还会索引和跟踪这些数据,让大数据处理和分析效率达到前所未有的高度。Spark,则是那么一个专门用来对那些分布式存储的大数据进行处理的工具,它并不会进行分布式数据的存储。

2、两者可合可分

Hadoop除了提供为大家所共识的HDFS分布式数据存储功能之外,还提供了叫做MapReduce的数据处理功能。所以这里我们完全可以抛开Spark,使用Hadoop自身的MapReduce来完成数据的处理。

相反,Spark也不是非要依附在Hadoop身上才能生存。但如上所述,毕竟它没有提供文件管理系统,所以,它必须和其他的分布式文件系统进行集成才能运作。这里我们可以选择Hadoop的HDFS,也可以选择其他的基于云的数据系统平台。但Spark默认来说还是被用在Hadoop上面的,毕竟,大家都认为它们的结合是最好的。

以下是从网上摘录的对MapReduce的最简洁明了的解析:

3、Spark数据处理速度秒杀MapReduce

Spark因为其处理数据的方式不一样,会比MapReduce快上很多。MapReduce是分步对数据进行处理的: ”从集群中读取数据,进行一次处理,将结果写到集群,从集群中读取更新后的数据,进行下一次的处理,将结果写到集群,等等…“ Booz Allen Hamilton的数据科学家Kirk Borne如此解析。

反观Spark,它会在内存中以接近“实时”的时间完成所有的数据分析:“从集群中读取数据,完成所有必须的分析处理,将结果写回集群,完成,” Born说道。Spark的批处理速度比MapReduce快近10倍,内存中的数据分析速度则快近100倍。

如果需要处理的数据和结果需求大部分情况下是静态的,且你也有耐心等待批处理的完成的话,MapReduce的处理方式也是完全可以接受的。

但如果你需要对流数据进行分析,比如那些来自于工厂的传感器收集回来的数据,又或者说你的应用是需要多重数据处理的,那么你也许更应该使用Spark进行处理。

大部分机器学习算法都是需要多重数据处理的。此外,通常会用到Spark的应用场景有以下方面:实时的市场活动,在线产品推荐,网络安全分析,机器日记监控等。

4、灾难恢复

两者的灾难恢复方式迥异,但是都很不错。因为Hadoop将每次处理后的数据都写入到磁盘上,所以其天生就能很有弹性的对系统错误进行处理。Spark的数据对象存储在分布于数据集群中的叫做弹性分布式数据集(RDD: Resilient Distributed Dataset)中。这些数据对象既可以放在内存,也可以放在磁盘,所以RDD同样也可以提供完成的灾难恢复功能。

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » 阿里云服务器版本不一致有什么方法可以解决此问题,版本不一致配置Hadoop集群出现问题怎么解决?

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情