服务器与组织架构的关系?

服务器与组织架构的关系?,第1张

我们将商品社会的基本行为抽象为服务的消费者和服务的提供者模式,在这个模式下几乎可以涵盖所有的商业行为。但是,问题来了,到底谁是服务的所有者(owner)北京电脑培训发现大多数人会认为提供者是服务的所有者,所以在传统的企业中,IT应用系统对服务的生命周期负责,应用系统的产品经理来定义应用系统对外的服务接口。这带来一个问题,同样的一类应用,由于实现的厂商不一样,所以各自的产品对外提供的服务千差万别,这就造成了服务的消费系统无所适从。

于是,我怀疑服务的提供者作为服务的owner来决定服务的生命周期甚至服务的定义是否具有合理性。首先,我认为服务的消费者真正决定了服务的内涵,也就是需求决定服务,从这个意义上讲服务是消费者定义的,提供者只是根据消费者对服务的定义通过技术手段实现了服务,只是服务的外延。这样看来,消费者是服务的理论上的定义者,而提供者是服务事实上的定义者,这两者在定义权上是有冲突的。

我认为,商业社会中解决冲突的最有效方法就是订立契约。假如有一个虚拟的服务提供者从大量消费者的需求中抽象出共同的行为模式,这个行为模式因为能涵盖消费者某些消费需求,就能隐式的和消费者签订提供服务的契约了。所谓隐式意思是说,虽然没有和消费者正式的签订合约,但是服务的合约内涵已经满足甚至超过任何一个消费者对此类服务的需求。可以将这个单方面定义合约的角色称为服务产品经理,服务产品经理在一个企业中的角色更像一个真正的产品经理,他们对自己的产品(服务)负责,他们定义并描述服务在各个维度上的属性,并不断寻找合适的服务提供者提供更优质的服务水平。

我们有理由相信,在后SOA时代,随着社会分工的进一步精细化,企业内部的IT系统将逐步的减少,取而代之的是更专业化的外部专业系统。而企业内部将会出现专职的服务产品经理来定义企业所需的服务,这些服务通过灵活的接口与外部专业系统对接,从而低成本、灵活高效的为企业提供高质量的IT服务。

最近对离线数仓体系进行了扩容和架构改造,也算是一波三折,出了很多小插曲,有一些改进点对我们来说也是真空地带,通过对比和模拟压测总算是得到了预期的结果,这方面尤其值得一提的是郭运凯同学的敬业,很多前置的工作,优化和应用压测的工作都是他完成的。 

整体来说,整个事情的背景是因为服务器硬件过保,刚好借着过保服务器替换的机会来做集群架构的优化和改造。 

1集群架构改造的目标

在之前也总结过目前存在的一些潜在问题,也是本次部署架构改进的目标:

1)之前 的GP segment数量设计过度 ,因为资源限制,过多考虑了功能和性能,对于集群的稳定性和资源平衡性考虑有所欠缺,在每个物理机节点上部署了10个Primary,10个Mirror,一旦1个服务器节点不可用,整个集群几乎无法支撑业务。

2)GP集群 的存储资源和性能的平衡不够 ,GP存储基于RAID-5,如果出现坏盘,磁盘重构的代价比较高,而且重构期间如果再出现坏盘,就会非常被动,而且对于离线数仓的数据质量要求较高,存储容量相对不是很大,所以在存储容量和性能的综合之上,我们选择了RAID-10。

3)集 群的异常场景的恢复需要完善, 集群在异常情况下(如服务器异常宕机,数据节点不可用,服务器后续过保实现节点滚动替换)的故障恢复场景测试不够充分,导致在一些迁移和改造中,相对底气不足,存在一些知识盲区。

4)集群版本过 ,功能和性能上存在改进空间。毕竟这个集群是4年前的版本,底层的PG节点的版本也比较旧了,在功能上和性能上都有一定的期望,至少能够与时俱进。

5)操作系统版本升 ,之前的操作系统是基于CentOS6,至少需要适配CentOS 7 。

6)集群TPCH 压测验收 ,集群在完成部署之后,需要做一次整体的TPCH压测验收,如果存在明显的问题需要不断调整配置和架构,使得达到预期的性能目标。

此外在应用层面也有一些考虑,总而言之,是希望能够解决绝大多数的痛点问题,无论是在系统层面,还是应用层面,都能上一个台阶。

2集群规划设计的选型和思考

明确了目标,就是拆分任务来规划设计了,在规划设计方面主要有如下的几个问题:

1)Greenplum的版本选择 ,目前有两个主要的版本类别,一个是开源版(Open Source distribution)和Pivotal官方版,它们的其中一个差异就是官方版需要注册,签署协议,在此基础上还有GPCC等工具可以用,而开源版本可以实现源码编译或者rpm安装,无法配置GPCC。综合来看,我们选择了 开源版本的6162 ,这其中也询问了一些行业朋友,特意选择了几个涉及稳定性bug修复的版本。

2)数据集市的技术选型 ,在数据集市的技术选型方面起初我是比较坚持基于PostgreSQL的模式,而业务侧是希望对于一些较为复杂的逻辑能够通过GP去支撑,一来二去之后,加上我咨询了一些行业朋友的意见,是可以选择基于GP的方案,于是我们就抱着试一试的方式做了压测,所以数据仓库和和数据集市会是两个不同规模体量的GP集群来支撑。

3)GP的容量规划 ,因为之前的节点设计有些过度,所以在数量上我们做了缩减,每台服务器部署12个segment节点,比如一共12台服务器,其中有10台服务器是Segment节点,每台上面部署了6个Primary,6个Mirror,另外2台部署了Master和Standby,就是即(6+6)10+2,整体的配置情况类似下面的模式。

4)部署架构方案选型 ,部署架构想起来比较容易,但是落实起来有很多的考虑细节,起初考虑GP的Master和Standby节点如果混用还是能够节省一些资源,所以设计的数据仓库和数据集市的部署架构是这样考虑的,但是从走入部署阶段之后,很快就发现这种交叉部署的模式是不可行的,或者说有一些复杂度。

除此之外,在单个GP集群的部署架构层面,还有4类方案考虑。

  方案1 :Master,Standby和segment混合部署

  方案2 :Master,Standby和segment独立部署,整个集群的节点数会少一些

  方案3 :Segment独立部署,Master,Standby虚拟机部署

  方案4 :最小化单节点集群部署(这是数据集市最保底的方案)  

这方面存在较大的发挥空间,而且总体来说这种验证磨合的成本也相对比较高,实践给我上了一课, 越是想走捷径,越是会让你走一些弯路 ,而且有些时候的优化其实我也不知道改怎么往下走,感觉已经无路可走,所以上面这4种方案其实我们都做了相关的测试和验证。

3集群架构的详细设计和实践

1)设计详细的部署架构图

在整体规划之上,我设计了如下的部署架构图,每个服务器节点有6个Primary,6个Mirror,服务器两两映射。

2)内核参数优化

按照官方文档的建议和具体的配置情况,我们对内核参数做了如下的配置:

vmswappiness=10

vmzone_reclaim_mode = 0

vmdirty_expire_centisecs = 500

vmdirty_writeback_centisecs = 100

vmdirty_background_ratio = 0 # See System Memory

vmdirty_ratio = 0

vmdirty_background_bytes = 1610612736

vmdirty_bytes = 4294967296

vmmin_free_kbytes = 3943084

vmovercommit_memory=2

kernelsem = 500 2048000 200 4096

4集群部署步骤

1)首先是配置/etc/hosts,需要把所有节点的IP和主机名都整理出来。 

2)配置用户,很常规的步骤

groupadd  gpadmin

useradd gpadmin -g gpadmin

passwd gpadmin

3)配置sysctlconf和资源配置

4)使用rpm模式安装

# yum install -y apr apr-util bzip2 krb5-devel  zip

# rpm -ivh open-source-greenplum-db-6162-rhel7-x86_64rpm

5)配置两个host文件,也是为了后面进行统一部署方便,在此建议先开启gpadmin的sudo权限,可以通过gpssh处理一些较为复杂的批量操作

6)通过gpssh-exkeys来打通ssh信任关系,这里需要吐槽这个ssh互信,端口还得是22,否则处理起来很麻烦,需要修改/etc/ssh/sshd_config文件

gpssh-exkeys -f hostlist

7)较为复杂的一步是打包master的Greenplum-db-6162软件,然后分发到各个segment机器中,整个过程涉及文件打包,批量传输和配置,可以借助gpscp和gpssh,比如gpscp传输文件,如下的命令会传输到/tmp目录下

gpscp -f /usr/local/greenplum-db/conf/hostlist /tmp/greenplum-db-6162targz =:/tmp

或者说在每台服务器上面直接rpm -ivh安装也可以。

8)Master节点需要单独配置相关的目录,而Segment节点的目录可以提前规划好,比如我们把Primary和Mirror放在不同的分区。 

mkdir -p /data1/gpdata/gpdatap1

mkdir -p /data1/gpdata/gpdatap2

mkdir -p /data2/gpdata/gpdatam1

mkdir -p /data2/gpdata/gpdatam2

9)整个过程里最关键的就是gpinitsystem_config配置了,因为Segment节点的ID配置和命名,端口区间都是根据一定的规则来动态生成的,所以对于目录的配置需要额外注意。

10)部署GP集群最关键的命令是

gpinitsystem -c gpinitsystem_config -s standby_hostname

其中文件gpinitsystem_config的主要内容如下:

MASTER_HOSTNAME=xxxx

declare -a DATA_DIRECTORY=(/data1/gpdata/gpdatap1  /data1/gpdata/gpdatap2 /data1/gpdata/gpdatap3 /data1/gpdata/gpdatap4 /data1/gpdata/gpdatap5 /data1/gpdata/gpdatap6)

TRUSTED_SHELL=ssh

declare -a MIRROR_DATA_DIRECTORY=(/data2/gpdata/gpdatam1  /data2/gpdata/gpdatam2 /data2/gpdata/gpdatam3 /data2/gpdata/gpdatam4 /data2/gpdata/gpdatam5 /data2/gpdata/gpdatam6)

MACHINE_LIST_FILE=/usr/local/greenplum-db/conf/seg_hosts

整个过程大约5分钟~10分钟以内会完成,在部署过程中建议要查看后端的日志查看是否有异常,异常情况下的体验不是很好,可能会白等。

5集群部署问题梳理

集群部署中还是有很多细节的问题,太基础的就不提了,基本上就是配置,目录权限等问题,我提另外几个:

1) 资源配置问题 ,如果/etc/security/limitsconf的资源配置不足会在安装时有如下的警告:

2) 网络问题 ,集群部署完成后可以正常操作,但是在查询数据的时候会抛出错误,比如SQL是这样的,看起来很简单:select count() from customer,但是会抛出如下的错误:

这个问题的主要原因还是和防火墙配置相关,其实不光需要配置INPUT的权限,还需要配置OUTPUT的权限。 

对于数据节点可以开放略大的权限,如:

入口的配置:

-A INPUT -p all -s xxxxx    -j ACCEPT

出口的配置:

-A OUTPUT -p all -s xxxxx    -j ACCEPT

3)网络配置问题 ,这个问题比较诡异的是,报错和上面是一样的,但是在排除了防火墙配置后,select count() from customer;这样的语句是可以执行的,但是执行的等待时间较长,比如表lineitem这表比较大,过亿的数据量,,在10个物理节点时,查询响应时间是10秒,但是4个物理节点,查询响应时间是在90秒,总体删感觉说不过去。

为了排查网络问题,使用gpcheckperf等工具也做过测试,4节点和10节点的基础配置也是相同的。

gpcheckperf -f /usr/local/greenplum-db/conf/seg_hosts -r N -d /tmp

$ cat /etc/hosts

127001   localhost localhostlocaldomain localhost4 localhost4localdomain4

::1      localhost localhostlocaldomain localhost6 localhost6localdomain6

#127001    test-dbs-gp-128-230

xxxxx128238 test-dbs-gp-svr-128-238

xxxxx128239 test-dbs-gp-svr-128-239

其中127001的这个配置在segment和Master,Standby混部的情况是存在问题的,修正后就没问题了,这个关键的问题也是郭运凯同学发现的。

5集群故障恢复的测试

集群的故障测试是本次架构设计中的重点内容,所以这一块也是跃跃欲试。

整体上我们包含两个场景,服务器宕机修复后的集群恢复和服务器不可用时的恢复方式。

第一种场景相对比较简单,就是让Segment节点重新加入集群,并且在集群层面将Primary和Mirror的角色互换,而第二种场景相对时间较长一些,主要原因是需要重构数据节点,这个代价基本就就是PG层面的数据恢复了,为了整个测试和恢复能够完整模拟,我们采用了类似的恢复方式,比如宕机修复使用了服务器重启来替代,而服务器不可用则使用了清理数据目录,类似于一台新配置机器的模式。

1)服务器宕机修复后集群恢复

select from gp_segment_configuration where status!='u';

gprecoverseg  -o /recov

gprecoverseg -r

select from gp_segment_configuration where status='u'

2)服务器不可用时集群恢复

重构数据节点的过程中,总体来看网络带宽还是使用很充分的。

select from gp_segment_configuration where status='u'

select from gp_segment_configuration where status='u' and role!=preferred_role;

gprecoverseg -r

select from gp_segment_configuration where status='u' and role!=preferred_role;

经过测试,重启节点到数据修复,近50G数据耗时3分钟左右

6集群优化问题梳理

1)部署架构优化和迭代

对于优化问题,是本次测试中尤其关注,而且争议较多的部分。 

首先在做完初步选型后,数仓体系的部署相对是比较顺利的,采用的是第一套方案。

数据集市的集群部分因为节点相对较少,所以就选用了第二套方案

实际测试的过程,因为配置问题导致TPCH的结果没有达到预期。

所以这个阶段也产生了一些疑问和怀疑,一种就是折回第一种方案,但是节点数会少很多,要不就是第三种采用虚拟机的模式部署,最保底的方案则是单节点部署,当然这是最牵强的方案。

这个阶段确实很难,而在上面提到的修复了配置之后,集群好像突然开悟了一般,性能表现不错,很快就完成了100G和1T数据量的TPCH测试。

在后续的改造中,我们也尝试了第三套方案,基于虚拟机的模式,通过测试发现,远没有我们预期的那么理想,在同样的数据节点下,Master和Standby采用物理机和虚拟机,性能差异非常大,这个是出乎我们预料的。比如同样的SQL,方案3执行需要2秒,而方案2则需要80秒,这个差异我们对比了很多指标,最后我个人理解差异还是在网卡部分。

所以经过对比后,还是选择了方案2的混合部署模式。

2)SQL性能优化的分析

此外整个过程的TPCH也为集群的性能表现提供了参考。比如方案2的混合部署模式下,有一条SQL需要18秒,但是相比同类型的集群,可能就只需要2秒钟左右,这块显然是存在问题的。 

在排除了系统配置,硬件配置的差异之后,经典的解决办法还是查看执行计划。

性能较差的SQL执行计划:

# explain analyze select count()from customer;

QUERY PLAN   

Aggregate  (cost=00043100 rows=1 width=8) (actual time=2479291624792916 rows=1 loops=1)

   ->  Gather Motion 36:1  (slice1; segments: 36)  (cost=00043100 rows=1 width=1) (actual time=325516489394 rows=150000000 loops=1)

         ->  Seq Scan on customer  (cost=00043100 rows=1 width=1) (actual time=07801267878 rows=4172607 loops=1)

Planning time: 4466 ms

   (slice0)    Executor memory: 680K bytes

   (slice1)    Executor memory: 218K bytes avg x 36 workers, 218K bytes max (seg0)

Memory used:  2457600kB

Optimizer: Pivotal Optimizer (GPORCA)

Execution time: 24832611 ms

(9 rows)

Time: 24892500 ms

性能较好的SQL执行计划:

# explain analyze select count()from customer;                            

QUERY PLAN

Aggregate  (cost=00084208 rows=1 width=8) (actual time=15193111519311 rows=1 loops=1)

   ->  Gather Motion 36:1  (slice1; segments: 36)  (cost=00084208 rows=1 width=8) (actual time=6347871519214 rows=36 loops=1)

         ->  Aggregate  (cost=00084208 rows=1 width=8) (actual time=14732961473296 rows=1 loops=1)

               ->  Seq Scan on customer  (cost=00083433 rows=4166667 width=1) (actual time=0758438319 rows=4172607 loops=1)

Planning time: 5033 ms

   (slice0)    Executor memory: 176K bytes

   (slice1)    Executor memory: 234K bytes avg x 36 workers, 234K bytes max (seg0)

Memory used:  2457600kB

Optimizer: Pivotal Optimizer (GPORCA)

Execution time: 1543611 ms

(10 rows)

Time: 1549324 ms

很明显执行计划是被误导了,而误导的因素则是基于统计信息,这个问题的修复很简单:

analyze customer;

但是深究原因,则是在压测时,先是使用了100G压测,压测完之后保留了原来的表结构,直接导入了1T的数据量,导致执行计划这块没有更新。

3)集群配置优化

此外也做了一些集群配置层面的优化,比如对缓存做了调整。 

gpconfig -c statement_mem -m 2457600 -v 2457600

gpconfig -c gp_vmem_protect_limit -m 32000 -v 32000

7集群优化数据

最后来感受下集群的性能:

1)10个物理节点,(6+6)10+2

tpch_1t=# iming on

Timing is on

tpch_1t=# select count()from customer;

   count   

-----------

150000000

(1 row)

Time: 1235801 ms

tpch_1t=# select count()from lineitem;

   count    

------------

5999989709

(1 row)

Time: 10661756 ms

2)6个物理节点,(6+6)6

# select count()from customer;

   count   

-----------

 150000000

(1 row)

Time: 1346833 ms

# select count()from lineitem;

   count    

------------

 5999989709

(1 row)

Time: 18145092 ms

3)4个物理节点,(6+6)4

# select count()from customer;

   count   

-----------

 150000000

(1 row)

Time: 1531621 ms

# select count()from lineitem;

   count    

------------

 5999989709

(1 row)

Time: 25072501 ms

4)TPCH在不通架构模式下的性能比对 ,有19个查询模型,有个别SQL逻辑过于复杂暂时忽略,也是郭运凯同学整理的列表。

在1T基准下的基准测试表现:

路由模式部署灵活,约60%的用户采用这种方式部署;桥接模式不改变现有的网络架构;服务直接返回(DSR)比较适合吞吐量大特别是内容分发的网络应用。约30%的用户采用这种模式。1、路由模式(推荐) 路由模式的部署方式如上图。服务器的网关必须设置成负载均衡机的LAN口地址,且与WAN口分署不同的逻辑网络。因此所有返回的流量也都经过负载均衡。这种方式对网络的改动小,能均衡任何下行流量。2、桥接模式 桥接模式配置简单,不改变现有网络。负载均衡的WAN口和LAN口分别连接上行设备和下行服务器。LAN口不需要配置IP(WAN口与LAN口是桥连接),所有的服务器与负载均衡均在同一逻辑网络中。由于这种安装方式容错性差,网络架构缺乏弹性,对广播风暴及其他生成树协议循环相关联的错误敏感,因此一般不推荐这种安装架构。3、服务直接返回模式 这种安装方式负载均衡的LAN口不使用,WAN口与服务器在同一个网络中,互联网的客户端访问负载均衡的虚IP(VIP),虚IP对应负载均衡机的WAN口,负载均衡根据策略将流量分发到服务器上,服务器直接响应客户端的请求。因此对于客户端而言,响应他的IP不是负载均衡机的虚IP(VIP),而是服务器自身的IP地址。也就是说返回的流量是不经过负载均衡的。

1、c/s、b/s是当下两种服务器架构模型。

2、c/s架构是指客户端/服务器的架构,需要同时编写两套代码,即客户端一套,服务端一套,所以开发起来速度较慢,日后的维护工作量也较大。

3、b/s架构是指浏览器/服务器构架,只需要编写服务器端的代码即可,开发完成了,就可以将应用部署到一些中间服务器上来发布自己的运用,拿web应该用来说,这些服务器有IIS、jboss、weblogic、websphere、tomcat等等。

4、客户端与服务器交互时,服务器会根据客户端的不同请求进行相应的业务处理,之后将结果返回对客户端。

以上只是简单的描述了下c/s、b/s架构,更详细说明楼主可以网上找些相关资料了解。

有问题欢迎提问,!

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » 服务器与组织架构的关系?

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情