什么是sqlserver的集群
由二台或更多物理上独立的服务器共同组成的“虚拟”服务器称之为集群服务器。一项称做MicroSoft集群服务(MSCS)的微软服务可对集群服务器进行管理。一个SQL Server集群是由二台或更多运行SQL Server的服务器(节点)组成的虚拟服务器。如果集群中的一个节点发生故障,集群中的另一个节点就承担这个故障节点的责任。
认为一个SQL Server集群能够给集群中的两个节点带来负载平衡,这是一种常见的误解。虽然这似乎很有用,但却是不正确的。这也意味着集束SQL Server不能真正提高性能。集束SQL Server只能提供故障转移功能。故障转移就是当系统中的一台机器发生故障失去其功能时,另一台机器将接手运行它的SQL Server实例。这种功能失效可能是由于硬件故障、服务故障、人工故障或各种其它原因。
为何要集束SQL Server环境?
在实用性方面,集群SQL Server环境令人满意。在进行故障转移时,将数据库实例由一台服务器转移到另一台服务器的时间非常短暂,一般只需要3至7秒钟。虽然需要重建连接,但对数据库的终端用户而言,故障转移处理通常是透明的。低廉的故障转移成本还可帮助你对集群中的节点进行维护,而不会造成服务器完全无法访问。
SQL Server集群类型
一共有两种类型的SQL Server集群:主动/被动集群和主动/主动集群。下面分别对它们进行说明(说明以两个节点的SQL Server集群为基础)。
主动/被动集群
在这种类型的集群中,一次只有一个节点控制SQL Server资源。另一个节点一直处于备用模式,等待故障发生。进行故障转移时,备用的节点即取得SQL Server资源的控制权。
优点:由于服务器上只有一个实例在运行,所以在进行故障转移时,不需要另外的服务器来接管两个SQL Server实例,性能也不会因此降低。
缺点:由于虚拟服务器上只有一个SQL Server实例在运行,另一台服务器总是处理备用模式与空闲状态。这意味着你并没有充分利用你购买的硬件。
主动/主动集群
在这种类型的集群中,集群中的每个节点运行一个独立且主动的SQL Server实例。发生节点故障时,另一个节点能够控制发生故障节点的SQL Server实例。然后这个正常的节点将运行两个SQL Server实例——它自己的实例和发生故障的实例。
优点:通过这种配置,你能够充分利用你的硬件。在这样的系统中,两个服务器都在运行,而不是只有一台服务器运行,而另一台处于等待故障发生的备用模式,因此你能够充分利用你购买的机器。
缺点:如果进行故障转移,一台服务器运行两个SQL Server实例,性能就会受到不利影响。然而,性能降低总比虚拟服务器完全失灵要强得多。这种配置的另一故障在于它要求购买的许可要比主动/被动集群多一些。因为集群在运行两个主动SQL Server实例,这要求你购买两个单独的服务器许可。在某些情况下,这也可能对你形成阻碍。
集群考虑
在高实用性方面,集群SQL Server环境有一定的优势。然而,高实用性也确实伴随某种折衷。
首先,建立一个集群SQL Server环境非常昂贵。这是因为集群中的节点必须遵照集群节点的兼容性列表。而且,还需要建立一个复杂的网络,机器的配置必须几乎相同,同时需要实现数据库文件磁盘子系统共享。存储区网络(SAN)是建立这种子系统的不错选择,但SAN并非必要,而且十分昂贵。另外,如果你正在运行一个主动/主动集群,你需要为集群中运行SQL Server实例的每台机器的处理器购买一个许可。
因为当地集群主要局限于同一地理区域,自然灾难可能会使集群完全失灵。在那种情况下,你需要转移到灾难恢复站点进行继续操作。你也可以建立地理分散的SQL Server集群,但这样的系统更加复杂与昂贵。
简单说,分布式是以缩短单个任务的执行时间来提升效率的,而集群则是通过提高单位时间内执行的任务数来提升效率。
例如:
如果一个任务由10个子任务组成,每个子任务单独执行需1小时,则在一台服务器上执行改任务需10小时。
采用分布式方案,提供10台服务器,每台服务器只负责处理一个子任务,不考虑子任务间的依赖关系,执行完这个任务只需一个小时。(这种工作模式的一个典型代表就是Hadoop的Map/Reduce分布式计算模型)
而采用集群方案,同样提供10台服务器,每台服务器都能独立处理这个任务。假设有10个任务同时到达,10个服务器将同时工作,10小后,10个任务同时完成,这样,整身来看,还是1小时内完成一个任务!
以下是摘抄自网络文章:
一、集群概念
1 两大关键特性
集群是一组协同工作的服务实体,用以提供比单一服务实体更具扩展性与可用性的服务平台。在客户端看来,一个集群就象是一个服务实体,但事实上集群由一组服务实体组成。与单一服务实体相比较,集群提供了以下两个关键特性:
· 可扩展性--集群的性能不限于单一的服务实体,新的服务实体可以动态地加入到集群,从而增强集群的性能。
· 高可用性--集群通过服务实体冗余使客户端免于轻易遇到out of service的警告。在集群中,同样的服务可以由多个服务实体提供。如果一个服务实体失败了,另一个服务实体会接管失败的服务实体。集群提供的从一个出 错的服务实体恢复到另一个服务实体的功能增强了应用的可用性。
2 两大能力
为了具有可扩展性和高可用性特点,集群的必须具备以下两大能力:
· 负载均衡--负载均衡能把任务比较均衡地分布到集群环境下的计算和网络资源。
· 错误恢复--由于某种原因,执行某个任务的资源出现故障,另一服务实体中执行同一任务的资源接着完成任务。这种由于一个实体中的资源不能工作,另一个实体中的资源透明的继续完成任务的过程叫错误恢复。
负载均衡和错误恢复都要求各服务实体中有执行同一任务的资源存在,而且对于同一任务的各个资源来说,执行任务所需的信息视图(信息上下文)必须是一样的。
3 两大技术
实现集群务必要有以下两大技术:
· 集群地址--集群由多个服务实体组成,集群客户端通过访问集群的集群地址获取集群内部各服务实体的功能。具有单一集群地址(也叫单一影像)是集群的一个基本特征。维护集群地址的设置被称为负载均衡器。负载均衡器内部负责管理各个服务实体的加入和退出,外部负责集群地址向内部服务实体地址的转换。有的负载均衡器实现真正的负载均衡算法,有的只支持任务的转换。只实现任务转换的负载均衡器适用于支持ACTIVE-STANDBY的集群环境,在那里,集群中只有一个服务实体工作,当正在工作的服务实体发生故障时,负载均衡器把后来的任务转向另外一个服务实体。
· 内部通信--为了能协同工作、实现负载均衡和错误恢复,集群各实体间必须时常通信,比如负载均衡器对服务实体心跳测试信息、服务实体间任务执行上下文信息的通信。
具有同一个集群地址使得客户端能访问集群提供的计算服务,一个集群地址下隐藏了各个服务实体的内部地址,使得客户要求的计算服务能在各个服务实体之间分布。内部通信是集群能正常运转的基础,它使得集群具有均衡负载和错误恢复的能力。
二、集群分类
Linux集群主要分成三大类(高可用集群, 负载均衡集群,科学计算集群)
高可用集群(High Availability Cluster)
负载均衡集群(Load Balance Cluster)
科学计算集群(High Performance Computing Cluster)
具体包括:
Linux High Availability 高可用集群
(普通两节点双机热备,多节点HA集群,RAC, shared, share-nothing集群等)
Linux Load Balance 负载均衡集群
(LVS等)
Linux High Performance Computing 高性能科学计算集群
(Beowulf 类集群)
三、详细介绍
1 高可用集群(High Availability Cluster)
常见的就是2个节点做成的HA集群,有很多通俗的不科学的名称,比如"双机热备","双机互备","双机"。
高可用集群解决的是保障用户的应用程序持续对外提供服务的能力。 (请注意高可用集群既不是用来保护业务数据的,保护的是用户的业务程序对外不间断提供服务,把因软件/硬件/人为造成的故障对业务的影响降低到最小程度)。
2 负载均衡集群(Load Balance Cluster)
负载均衡系统:集群中所有的节点都处于活动状态,它们分摊系统的工作负载。一般Web服务器集群、数据库集群和应用服务器集群都属于这种类型。
负载均衡集群一般用于相应网络请求的网页服务器,数据库服务器。这种集群可以在接到请求时,检查接受请求较少,不繁忙的服务器,并把请求转到这些服务器上。从检查其他服务器状态这一点上看,负载均衡和容错集群很接近,不同之处是数量上更多。
3 科学计算集群(High Performance Computing Cluster)
高性能计算(High Perfermance Computing)集群,简称HPC集群。这类集群致力于提供单个计算机所不能提供的强大的计算能力。
31 高性能计算分类
311 高吞吐计算(High-throughput Computing)
有一类高性能计算,可以把它分成若干可以并行的子任务,而且各个子任务彼此间没有什么关联。象在家搜寻外星人( SETI@HOME -- Search for Extraterrestrial Intelligence at Home )就是这一类型应用。这一项目是利用Internet上的闲置的计算资源来搜寻外星人。SETI项目的服务器将一组数据和数据模式发给Internet上参加SETI的计算节点,计算节点在给定的数据上用给定的模式进行搜索,然后将搜索的结果发给服务器。服务器负责将从各个计算节点返回的数据汇集成完整的 数据。因为这种类型应用的一个共同特征是在海量数据上搜索某些模式,所以把这类计算称为高吞吐计算。所谓的Internet计算都属于这一类。按照 Flynn的分类,高吞吐计算属于SIMD(Single Instruction/Multiple Data)的范畴。
312 分布计算(Distributed Computing)
另一类计算刚好和高吞吐计算相反,它们虽然可以给分成若干并行的子任务,但是子任务间联系很紧密,需要大量的数据交换。按照Flynn的分类,分布式的高性能计算属于MIMD(Multiple Instruction/Multiple Data)的范畴。
四、分布式(集群)与集群的联系与区别
分布式是指将不同的业务分布在不同的地方;而集群指的是将几台服务器集中在一起,实现同一业务。
分布式中的每一个节点,都可以做集群。 而集群并不一定就是分布式的。
举例:就比如新浪网,访问的人多了,他可以做一个群集,前面放一个响应服务器,后面几台服务器完成同一业务,如果有业务访问的时候,响应服务器看哪台服务器的负载不是很重,就将给哪一台去完成。
而分布式,从窄意上理解,也跟集群差不多, 但是它的组织比较松散,不像集群,有一个组织性,一台服务器垮了,其它的服务器可以顶上来。
分布式的每一个节点,都完成不同的业务,一个节点垮了,那这个业务就不可访问了。
服务器集群:
服务器集群就是指将很多服务器集中起来一起进行同一种服务,在客户端看来就像是只有一个服务器。集群可以利用多个计算机进行并行计算从而获得很高的计算速度,也可以用多个计算机做备份,从而使得任何一个机器坏了整个系统还是能正常运行。
服务器负载均衡:
负载均衡 (Load Balancing) 建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。
分布式服务器:
所谓分布式资源共享服务器就是指数据和程序可以不位于一个服务器上,而是分散到多个服务器,以网络上分散分布的地理信息数据及受其影响的数据库操作为研究对象的一种理论计算模型服务器形式。分布式有利于任务在整个计算机系统上进行分配与优化,克服了传统集中式系统会导致中心主机资源紧张与响应瓶颈的缺陷,解决了网络GIS 中存在的数据异构、数据共享、运算复杂等问题,是地理信息系统技术的一大进步。
这个三种架构都是常见的服务器架构,集群的主要是IT公司在做,可以保障重要数据安全;负载均衡主要是为了分担访问量,避免临时的网络堵塞,主要用于电子商务类型的网站;分布式服务器主要是解决跨区域,多个单个节点达到高速访问的目前,一般是类似CDN的用途的话,会采用分布式服务器。
天互数据 为您解答,希望能帮到你
简单说一下,这两个概念完全两码事
服务器集群是指用N台服务器串联起来的集群技术,目的是使群集内的N台服务器能够做到负载均衡,达到提升性能的目的,整个集群对外是一个点
而局域网只是各自为战的点,只不过能互相访问而已,和集群没有可比性
0条评论