windows服务器怎么反爬虫,第1张

手工识别和拒绝爬虫的访问

相当多的爬虫对网站会造成非常高的负载,因此识别爬虫的来源IP是很容易的事情。最简单的办法就是用netstat检查80端口的连接:

netstat -nt | grep youhostip:80 | awk '{print $5}' | awk -F":" '{print $1}'| sort | uniq -c | sort -r -n

这行shell可以按照80端口连接数量对来源IP进行排序,这样可以直观的判断出来网页爬虫。一般来说爬虫的并发连接非常高。

如果使用lighttpd做Web

Server,那么就更简单了。lighttpd的mod_status提供了非常直观的并发连接的信息,包括每个连接的来源IP,访问的URL,连接状

态和连接时间等信息,只要检查那些处于handle-request状态的高并发IP就可以很快确定爬虫的来源IP了。

拒绝爬虫请求既可以通过内核防火墙来拒绝,也可以在web server拒绝,比方说用iptables拒绝:

iptables -A INPUT -i eth0 -j DROP -p tcp --dport 80 -s 8480460/24

直接封锁爬虫所在的C网段地址。这是因为一般爬虫都是运行在托管机房里面,可能在一个C段里面的多台服务器上面都有爬虫,而这个C段不可能是用户宽带上网,封锁C段可以很大程度上解决问题。

通过识别爬虫的User-Agent信息来拒绝爬虫

有很多爬虫并不会以很高的并发连接爬取,一般不容易暴露自己;有些爬虫的来源IP分布很广,很难简单的通过封锁IP段地址来解决问题;另外还有很多

各种各样的小爬虫,它们在尝试Google以外创新的搜索方式,每个爬虫每天爬取几万的网页,几十个爬虫加起来每天就能消耗掉上百万动态请求的资源,由于

每个小爬虫单独的爬取量都很低,所以你很难把它从每天海量的访问IP地址当中把它准确的挖出来。

这种情况下我们可以通过爬虫的User-Agent信息来识别。每个爬虫在爬取网页的时候,会声明自己的User-Agent信息,因此我们就可以

通过记录和分析User-Agent信息来挖掘和封锁爬虫。我们需要记录每个请求的User-Agent信息,对于Rails来说我们可以简单的在

app/controllers/applicationrb里面添加一个全局的before_filter,来记录每个请求的User-Agent信

息:

loggerinfo "HTTP_USER_AGENT #{requestenv["HTTP_USER_AGENT"]}"

然后统计每天的productionlog,抽取User-Agent信息,找出访问量最大的那些User-Agent。要注意的是我们只关注那

些爬虫的User-Agent信息,而不是真正浏览器User-Agent,所以还要排除掉浏览器User-Agent,要做到这一点仅仅需要一行

shell:

grep HTTP_USER_AGENT productionlog | grep -v -E 'MSIE|Firefox|Chrome|Opera|Safari|Gecko' | sort | uniq -c | sort -r -n | head -n 100 > botlog

统计结果类似这样:

57335 HTTP_USER_AGENT Baiduspider+(+http://wwwbaiducom/search/spiderhtm)

56639 HTTP_USER_AGENT Mozilla/50 (compatible; Googlebot/21; +http://wwwgooglecom/bothtml)

42610 HTTP_USER_AGENT Mediapartners-Google

19131 HTTP_USER_AGENT msnbot/20b (+http://searchmsncom/msnbothtm)

从日志就可以直观的看出每个爬虫的请求次数。要根据User-Agent信息来封锁爬虫是件很容易的事情,lighttpd配置如下:

$HTTP["useragent"] =~ "qihoobot|^Java|Commons-HttpClient|Wget|^PHP|Ruby|Python" {

urlrewrite = ( "^/()" => "/crawlerhtml" )

}

使用这种方式来封锁爬虫虽然简单但是非常有效,除了封锁特定的爬虫,还可以封锁常用的编程语言和HTTP类库的User-Agent信息,这样就可以避免很多无谓的程序员用来练手的爬虫程序对网站的骚扰。

还有一种比较常见的情况,就是某个搜索引擎的爬虫对网站爬取频率过高,但是搜索引擎给网站带来了很多流量,我们并不希望简单的封锁爬虫,仅仅是希望降低爬虫的请求频率,减轻爬虫对网站造成的负载,那么我们可以这样做:

$HTTP["user-agent"] =~ "Baiduspider+" {

connectiondelay-seconds = 10

}

对百度的爬虫请求延迟10秒钟再进行处理,这样就可以有效降低爬虫对网站的负载了。

通过网站流量统计系统和日志分析来识别爬虫

有些爬虫喜欢修改User-Agent信息来伪装自己,把自己伪装成一个真实浏览器的User-Agent信息,让你无法有效的识别。这种情况下我们可以通过网站流量系统记录的真实用户访问IP来进行识别。

主流的网站流量统计系统不外乎两种实现策略:一种策略是在网页里面嵌入一段js,这段js会向特定的统计服务器发送请求的方式记录访问量;另一种策

略是直接分析服务器日志,来统计网站访问量。在理想的情况下,嵌入js的方式统计的网站流量应该高于分析服务器日志,这是因为用户浏览器会有缓存,不一定

每次真实用户访问都会触发服务器的处理。但实际情况是,分析服务器日志得到的网站访问量远远高于嵌入js方式,极端情况下,甚至要高出10倍以上。

现在很多网站喜欢采用awstats来分析服务器日志,来计算网站的访问量,但是当他们一旦采用Google

Analytics来统计网站流量的时候,却发现GA统计的流量远远低于awstats,为什么GA和awstats统计会有这么大差异呢?罪魁祸首就是

把自己伪装成浏览器的网络爬虫。这种情况下awstats无法有效的识别了,所以awstats的统计数据会虚高。

其实作为一个网站来说,如果希望了解自己的网站真实访问量,希望精确了解网站每个频道的访问量和访问用户,应该用页面里面嵌入js的方式来开发自己

的网站流量统计系统。自己做一个网站流量统计系统是件很简单的事情,写段服务器程序响应客户段js的请求,分析和识别请求然后写日志的同时做后台的异步统

计就搞定了。

通过流量统计系统得到的用户IP基本是真实的用户访问,因为一般情况下爬虫是无法执行网页里面的js代码片段的。所以我们可以拿流量统计系统记录的

IP和服务器程序日志记录的IP地址进行比较,如果服务器日志里面某个IP发起了大量的请求,在流量统计系统里面却根本找不到,或者即使找得到,可访问量

却只有寥寥几个,那么无疑就是一个网络爬虫。

分析服务器日志统计访问最多的IP地址段一行shell就可以了:

grep Processing productionlog | awk '{print $4}' | awk -F'' '{print $1""$2""$3"0"}' | sort | uniq -c | sort -r -n | head -n 200 > stat_iplog

然后把统计结果和流量统计系统记录的IP地址进行对比,排除真实用户访问IP,再排除我们希望放行的网页爬虫,比方Google,百度,微软msn爬虫等等。最后的分析结果就就得到了爬虫的IP地址了。以下代码段是个简单的实现示意:

whitelist = []

IOforeach("#{RAILS_ROOT}/lib/whitelisttxt") { |line| whitelist << linesplit[0]strip if line }

realiplist = []

IOforeach("#{RAILS_ROOT}/log/visit_iplog") { |line| realiplist << linestrip if line }

iplist = []

IOforeach("#{RAILS_ROOT}/log/stat_iplog") do |line|

ip = linesplit[1]strip

iplist << ip if linesplit[0]to_i > 3000 && !whitelistinclude(ip) && !realiplistinclude(ip)

end

Reportdeliver_crawler(iplist)

分析服务器日志里面请求次数超过3000次的IP地址段,排除白名单地址和真实访问IP地址,最后得到的就是爬虫IP了,然后可以发送邮件通知管理员进行相应的处理。

网站的实时反爬虫防火墙实现策略

通过分析日志的方式来识别网页爬虫不是一个实时的反爬虫策略。如果一个爬虫非要针对你的网站进行处心积虑的爬取,那么他可能会采用分布式爬取策略,

比方说寻找几百上千个国外的代理服务器疯狂的爬取你的网站,从而导致网站无法访问,那么你再分析日志是不可能及时解决问题的。所以必须采取实时反爬虫策

略,要能够动态的实时识别和封锁爬虫的访问。

要自己编写一个这样的实时反爬虫系统其实也很简单。比方说我们可以用memcached来做访问计数器,记录每个IP的访问频度,在单位时间之内,

如果访问频率超过一个阀值,我们就认为这个IP很可能有问题,那么我们就可以返回一个验证码页面,要求用户填写验证码。如果是爬虫的话,当然不可能填写验

证码,所以就被拒掉了,这样很简单就解决了爬虫问题。

用memcache记录每个IP访问计数,单位时间内超过阀值就让用户填写验证码,用Rails编写的示例代码如下:

ip_counter = Railscacheincrement(requestremote_ip)

if !ip_counter

Railscachewrite(requestremote_ip, 1, :expires_in => 30minutes)

elsif ip_counter > 2000

render :template => 'test', :status => 401 and return false

end

这段程序只是最简单的示例,实际的代码实现我们还会添加很多判断,比方说我们可能要排除白名单IP地址段,要允许特定的User-Agent通过,要针对登录用户和非登录用户,针对有无referer地址采取不同的阀值和计数加速器等等。

此外如果分布式爬虫爬取频率过高的话,过期就允许爬虫再次访问还是会对服务器造成很大的压力,因此我们可以添加一条策略:针对要求用户填写验证码的

IP地址,如果该IP地址短时间内继续不停的请求,则判断为爬虫,加入黑名单,后续请求全部拒绝掉。为此,示例代码可以改进一下:

before_filter :ip_firewall, :except => :test

def ip_firewall

render :file => "#{RAILS_ROOT}/public/403html", :status => 403 if BlackListinclude(ip_sec)

end

我们可以定义一个全局的过滤器,对所有请求进行过滤,出现在黑名单的IP地址一律拒绝。对非黑名单的IP地址再进行计数和统计:

ip_counter = Railscacheincrement(requestremote_ip)

if !ip_counter

Railscachewrite(requestremote_ip, 1, :expires_in => 30minutes)

elsif ip_counter > 2000

crawler_counter = Railscacheincrement("crawler/#{requestremote_ip}")

if !crawler_counter

Railscachewrite("crawler/#{requestremote_ip}", 1, :expires_in => 10minutes)

elsif crawler_counter > 50

BlackListadd(ip_sec)

render :file => "#{RAILS_ROOT}/public/403html", :status => 403 and return false

end

render :template => 'test', :status => 401 and return false

end

如果某个IP地址单位时间内访问频率超过阀值,再增加一个计数器,跟踪他会不会立刻填写验证码,如果他不填写验证码,在短时间内还是高频率访问,就

把这个IP地址段加入黑名单,除非用户填写验证码激活,否则所有请求全部拒绝。这样我们就可以通过在程序里面维护黑名单的方式来动态的跟踪爬虫的情况,甚

至我们可以自己写个后台来手工管理黑名单列表,了解网站爬虫的情况。

关于这个通用反爬虫的功能,我们开发一个开源的插件:https://githubcom/csdn-dev/limiter

这个策略已经比较智能了,但是还不够好!我们还可以继续改进:

1、用网站流量统计系统来改进实时反爬虫系统

还记得吗?网站流量统计系统记录的IP地址是真实用户访问IP,所以我们在网站流量统计系统里面也去操作memcached,但是这次不是增加计数

值,而是减少计数值。在网站流量统计系统里面每接收到一个IP请求,就相应的cachedecrement(key)。所以对于真实用户的IP来说,它

的计数值总是加1然后就减1,不可能很高。这样我们就可以大大降低判断爬虫的阀值,可以更加快速准确的识别和拒绝掉爬虫。

2、用时间窗口来改进实时反爬虫系统

爬虫爬取网页的频率都是比较固定的,不像人去访问网页,中间的间隔时间比较无规则,所以我们可以给每个IP地址建立一个时间窗口,记录IP地址最近

12次访问时间,每记录一次就滑动一次窗口,比较最近访问时间和当前时间,如果间隔时间很长判断不是爬虫,清除时间窗口,如果间隔不长,就回溯计算指定时

间段的访问频率,如果访问频率超过阀值,就转向验证码页面让用户填写验证码。

最终这个实时反爬虫系统就相当完善了,它可以很快的识别并且自动封锁爬虫的访问,保护网站的正常访问。不过有些爬虫可能相当狡猾,它也许会通过大量

的爬虫测试来试探出来你的访问阀值,以低于阀值的爬取速度抓取你的网页,因此我们还需要辅助第3种办法,用日志来做后期的分析和识别,就算爬虫爬的再慢,

它累计一天的爬取量也会超过你的阀值被你日志分析程序识别出来。

如果你下面那个可以使用个,你就都加上代理就是了,应该是有的网站限制了爬虫的头部数据。 虽然你可以通过urlopen返回的数据判断,但是不建议做,增加成本。 如果解决了您的问题请采纳! 如果未解决请继续追问

爬虫技术是做从网页上抓取数据信息并保存的自动化程序,它的原理就是模拟浏览器发送网络请求,接受请求响应,然后按照一定的规则自动抓取互联网数据。分析如下:

1、获取网页

获取网页可以简单理解为向网页的服务器发送网络请求,然后服务器返回给我们网页的源代码,其中通信的底层原理较为复杂,而Python给我们封装好了urllib库和requests库等,这些库可以让我们非常简单的发送各种形式的请求。

2、提取信息

获取到的网页源码内包含了很多信息,想要进提取到我们需要的信息,则需要对源码还要做进一步筛选。可以选用python中的re库即通过正则匹配的形式去提取信息,也可以采用BeautifulSoup库(bs4)等解析源代码,除了有自动编码的优势之外,bs4库还可以结构化输出源代码信息,更易于理解与使用。

3、保存数据

提取到我们需要的有用信息后,需要在Python中把它们保存下来。可以使用通过内置函数open保存为文本数据,也可以用第三方库保存为其它形式的数据,例如可以通过pandas库保存为常见的xlsx数据,如果有等非结构化数据还可以通过pymongo库保存至非结构化数据库中。

4、让爬虫自动运行

从获取网页,到提取信息,然后保存数据之后,我们就可以把这些爬虫代码整合成一个有效的爬虫自动程序,当我们需要类似的数据时,随时可以获取。

网络爬虫状态码521表示服务器端对爬虫的请求进行了拒绝。这可能是因为服务器检测到了异常的流量或者认为该请求来自于一个自动化的程序。为了解决这个问题,您可以尝试以下几个方法:1 降低爬取速度:减慢爬取的速度,避免对服务器造成过大的负担。2 修改请求头信息:模拟真实的浏览器行为,包括User-Agent、Referer等请求头信息,以减少被服务器拒绝的可能性。3 使用代理IP:使用代理IP进行爬取,以隐藏真实的IP地址,减少被服务器拒绝的可能性。4 遵守网站的爬虫规则:有些网站会有明确的爬虫规则,您可以查看网站的robotstxt文件,了解网站对爬虫的限制。八爪鱼采集器是一款功能全面、操作简单、适用范围广泛的互联网数据采集器。如果您需要采集数据,八爪鱼采集器可以为您提供智能识别和灵活的自定义采集规则设置,帮助您快速获取所需的数据。了解更多八爪鱼采集器的功能与合作案例,请前往官网了解更多详情

自动抓取万维网信息的程序或脚本是网络爬虫。

网络爬虫,简单来讲,就是通过程序在互联网上自动获取信息的一种技术。这种技术的应用场景非常广泛,网络爬虫可以根据指定的规则,从互联网上下载网页、、视频等内容,并抽取其中的有用信息进行处理。网络爬虫的工作流程包括获取网页源代码、解析网页内容、存储数据等步骤。

网络爬虫的工作原理主要是通过Http协议进行通信,并从各个网站或服务器下载相应的资源。网站或服务器通常会依据Http请求中的内容类型来确定返回数据的类型。可以使用Python、Java等编程语言编写网络爬虫程序,在爬取数据后进行处理和存储。

关于网络爬虫分类的介绍

1、通用爬虫

通用爬虫也称为广泛爬虫,其目的是全面抓取互联网上的所有网页,以尽可能地覆盖更多的网页。这种爬虫通常会遵循一定的排除规则,如不爬取指定网站、不抓取无用内容等。

2、聚焦爬虫

聚焦爬虫也称为专用爬虫,其目的是抓取与指定主题相关的网页。这种爬虫会从所有网页中筛选出与指定主题相关的页面进行抓取,以减少无意义的网页下载。

3、增量式爬虫

增量式爬虫也称为持续式爬虫,其目的在于定期更新已经抓取过的网页,并新增有变化的页面。

网络数据量越来越大,从网页中获取信息变得越来越困难,如何有效地抓取并利用信息,已成为网络爬虫一个巨大的挑战。下面IPIDEA为大家讲明爬虫代理IP的使用方法。

 

1 利用爬虫脚本每天定时爬取代理网站上的ip,写入MongoDB或者其他的数据库中,这张表作为原始表。

 

2 使用之前需要做一步测试,就是测试这个ip是否有效,方法就是利用curl访问一个网站查看返回值,需要创建一张新表,循环读取原始表有效则插入,验证之后将其从原始表中删除,验证的同时能够利用响应时间来计算这个ip的质量,和最大使用次数,有一个算法能够参考一种基于连接代理优化管理的多线程网络爬虫处理方法。

 

3 把有效的ip写入ip代理池的配置文件,重新加载配置文件。

 

4让爬虫程序去指定的dailiy的服务ip和端口,进行爬取。

有,爬虫把一个API爬崩了是一件很严重的事情。虽然有些API是免费的,但它们仍然是公司的重要资源,如果它们被爬崩了,将会对公司服务器造成不可估量的损失。

首先,爬虫会消耗公司的服务器资源。由于大量的爬虫正在抓取API,服务器的带宽和CPU将会被大量占用,从而降低服务器的效率。其次,爬虫抓取会消耗大量的带宽,这将导致服务器带宽的浪费,从而影响服务器的性能。

最后,爬虫抓取会消耗大量的存储空间。由于API抓取量大,服务器存储空间将会被大量占用,从而降低服务器的性能。

因此,爬虫把免费API爬崩了是一件很严重的事情,会给公司带来很多不良影响。

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » windows服务器怎么反爬虫

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情