微米、纳米机器人是什么?
微米、纳米机器人主要是用来攻击硬件系统。
这些微小型机器人系统是微纳米技术和微机电系统发展的结果,其形状类似黄蜂或苍蝇、大小比蚂蚁还小,而且能飞、能爬,很难被发现或识别,可以大量“飞入”或“爬入”敌方的信息中心大楼及保密室,通过计算机的接口钻进计算机或网络服务器,偷窃秘密信息或破坏信息系统。
Micron(美国美光)半导体是全球第三大内存芯片厂,是全球著名的半导体存储器方案供应商,是美国500强企业之一。
Micron是其中先进的半导体解答领先世界的提供者之一。Micron微量和闪光组分用于现代最先进的计算,Micron的网络和通信产品,包括计算机、工作站、服务器、手机、无线电设备、数字照相机和GAMING系统。
美光科技有限公司(MicronTechnology,Inc)是高级半导体解决方案的全球领先供应商之一。Micron通过全球化的运营,美光公司制造并向市场推出DRAM、NAND闪存、CMOS图像传感器、其它半导体组件以及存储器模块,用于前沿计算、消费品、网络和移动便携产品。美光公司普通股代码为MU,在纽约证券交易所交易(NYSE)。
2010年9月,甲骨文公司对美国内存芯片制造商美光科技(Micron)公司提起诉讼,指控美光对电脑内存芯片进行价格控制,该诉讼是Sun微系统公司对美光诉讼的延续。
2018年5月31日,中国反垄断机构对三星、海力士、美光位于北京、上海、深圳的办公室展开突然调查,三大巨头有碍公平竞争的行为以及部分企业的举报推动了中国反垄断机构发起此次调查。
根据美光、三星、海力士财报统计,2017财年,三家公司的半导体业务在中国营收分别为10388亿美元、25386亿美元、8908亿美元,总计4468亿美元,同比2016财年的321亿美元增长3916%。
2018年7月3日,福州中级法院裁定对美国芯片巨头美光(Micron)发出“诉中禁令”,美国部分闪存SSD和内存条DRAM将暂时遭禁止在中国销售。
服务器CPU,顾名思义,就是在服务器上使用的CPU(Center Process Unit中央处理器)。众所周知,服务器是网络中的重要设备,要接受少至几十人、多至成千上万人的访问,因此对服务器具有大数据量的快速吞吐、超强的稳定性、长时间运行等严格要求。下面是我收集整理的服务器cpu是什么,欢迎阅读。
服务器cpu是什么
服务器的中央处理器(CPU),在内部结构上是跟台式机的差不多,它们都是由运算器和控制器组成,CPU的内部结构可分为控制单元,逻辑单元和存储单元三大部分。当然工作原理也是一样。随着两者的需求和发展,台式机和服务器的处理器在技术、性能指标等各方面都存在并存的现象,一个最明显的现象,像Intel的奔腾系列产品,一直应用于服务器的低端领域。但不代表着服务器CPU与台式机将会完全一样,下面内容会让你对服务器CPU有个全方位的了解……
一、产品篇
厂商
32bit 64bit
CISC型 VLIM型 RISC型
IA-32 X86-64 IA-64
AMD64 EM64T
Intel Pentium、Xeon Nocona Itanium
AMD Athlon MP Opteron
Transmeta
(全美达) Efficeon
IBM/Apple POWER、POWERPC
HP PA-RISC、Alpha
SGI MIPS
SUN UltraSPARC
上面简单把服务器处理器列了一下表,我们可以很清晰看出,服务器处理器按CPU的指令系统来区分,有CISC型CPU和RISC型CPU两类,后来出现了一种64位的VLIM指令系统的CPU,这种架构也叫做“IA-64”。目前基于这种指令架构的MPU有Intel的IA-64、EM64T和AMD的x86-64。RISC型的CPU是我们比较不熟悉的'类型,下面一一介绍;
IBM:
IBM 的四条处理器产品线 —— POWER 体系结构,PowerPC 系列的处理器,Star 系列(很少用于服务器中),以及 IBM 大型机上所采用的芯片
POWER 是 Power Optimization With Enhanced RISC 的缩写,是 IBM 的很多服务器、工作站和超级计算机的主要处理器。POWER 芯片起源于 801 CPU,是第二代 RISC 处理器。POWER 芯片在 1990 年被 RS 或 RISC System/6000 UNIX 工作站(现在称为 eServer 和 pSeries)采用,POWER 的产品有 POWER1、POWER2、POWER3、POWER4,现在最高端的是 POWER5。POWER5 处理器是目前单个芯片中性能最好的芯片。POWER6计划 2006 年发布。
PowerPC 是 Apple、IBM 和摩托罗拉(Motorola)联盟(也称为 AIM 联盟)的产物,它基于 POWER 体系结构,但是与 POWER 又有很多的不同。例如,PowerPC 是开放的,它既支持高端的内存模型,也支持低端的内存模型,而 POWER 芯片是高端的。最初的 PowerPC 设计也着重于浮点性能和多处理能力的研究。当然,它也包含了大部分 POWER 指令。很多应用程序都能在 PowerPC 上正常工作,这可能需要重新编译以进行一些转换。从 2000 年开始,摩托罗拉和 IBM 的 PowerPC 芯片都开始遵循 Book E 规范,这样可以提供一些增强特性,从而使得 PowerPC 对嵌入式处理器应用(例如网络和存储设备,以及消费者设备)更具有吸引力。PowerPC 体系结构的最大一个优点是它是开放的:它定义了一个指令集(ISA),并且允许任何人来设计和制造与 PowerPC 兼容的处理器;为了支持 PowerPC 而开发的软件模块的源代码都可以自由使用。最后,PowerPC 核心的精简为其他部件预留了很大的空间,从新添加缓存到协处理都是如此,这样可以实现任意的设计复杂度。IBM 的 4 条服务器产品线中有两条与 Apple 计算机的桌面和服务器产品线同样基于 PowerPC 体系结构,分别是 Nintendo GameCube 和 IBM 的“蓝色基因(Blue Gene)”超级计算机。现在,三种主要的 PowerPC 系列是嵌入式 PowerPC 400 系列以及独立的 PowerPC 700 和 PowerPC 900 系列。而PowerPC 600 系列,是第一个 PowerPC 芯片。它是 POWER 和 PowerPC 体系结构之间的桥梁。现在的PowerPC970,采用013微米SOI工艺制造,其内只有一颗CPU核心,带有512K 芯片内L2 cache。
HP:
HP(惠普)公司自已开发、研制的适用于服务器的RISC芯片——PA-RISC,于1986年问世。目前,HP主要开发64位超标量处理器PA-8000系列。第一款芯片的型号为PA-8000,主频为180MHz,后来陆续推出PA-8200、PA-8500、PA-8600、PA-8700、PA-8800型号。还有一个就是HP的“私生子”Alpha。(Alpha处理器最早由DEC公司设计制造,在Compaq公司收购DEC之后,Alpha处理器继续得到发展,后来又被惠普公司收购)
HP于2002年开始就公布了其两大RISC处理器——PA-RISC和Alpha的发展计划,其中PA-RISC与Alpha处理器至少要发展到2006年,对基于其上的服务器的服务支持将至少持续到2011年。2006年,HP将会推出PA-8900。而对于Alpha的发展,惠普公司于已经于2004年八月份发布了其面向AlphaServer Unix服务器的最后一款处理器产品——EV7z。
SUN:
1987年,SUN和TI公司合作开发了RISC微处理器——SPARC。Sun公司以其性能优秀的工作站闻名,这些工作站的心脏全都是采用Sun公司自己研发的Sparc芯片。SPARC微处理器最突出的特点就是它的可扩展性,这是业界出现的第一款有可扩展性功能的微处理。SPARC的推出为SUN赢得了高端微处理器市场的领先地位。
1999年6月,UltraSPARC III首次亮相。它采用先进的018微米工艺制造,全部采用64位结构和VIS指令集,时钟频率从600MHz起,可用于高达1000个处理器协同工作的系统上。UltraSPARC III和Solaris操作系统的应用实现了百分之百的二进制兼容,完全支持客户的软件投资,得到众多的独立软件供应商的支持。
根据Sun公司未来的发展规划,在64位UltraSparc处理器方面,主要有3个系列,首先是可扩展式s系列,主要用于高性能、易扩展的多处理器系统。目前UltraSparc Ⅲs的频率已经达到750GHz。将推出UltraSparc Ⅳs和UltraSparc Ⅴs等型号。其中UltraSparc Ⅳs的频率为1GHz,UltraSparc Ⅴs则为15GHz。其次是集成式i系列,它将多种系统功能集成在一个处理器上,为单处理器系统提供了更高的效益。已经推出的UltraSparc Ⅲi的频率达到700GHz,未来的UltraSparc Ⅳi的频率将达到1GHz。最后是嵌入式e系列,为用户提供理想的性能价格比,嵌入式应用包括瘦客户机、电缆调制解调器和网络接口等。Sun公司还将推出主频300、400、500MHz等版本的处理器。
SGI
MIPS技术公司是一家设计制造高性能、高档次及嵌入式32位和64位处理器的厂商,在RISC处理器方面占有重要地位。1984年,MIPS计算机公司成立。1992年,SGI收购了MIPS计算机公司。1998年,MIPS脱离SGI,成为MIPS技术公司。
MIPS公司设计RISC处理器始于二十世纪八十年代初,1986年推出R2000处理器,1988年推R3000处理器,1991年推出第一款64位商用微处器R4000。之后又陆续推出R8000(于1994年)、R10000(于1996年)和R12000(于1997年)等型号。
随后,MIPS公司的战略发生变化,把重点放在嵌入式系统。1999年,MIPS公司发布MIPS32和MIPS64架构标准,为未来MIPS处理器的开发奠定了基础。新的架构集成了所有原来NIPS指令集,并且增加了许多更强大的功能。MIPS公司陆续开发了高性能、低功耗的32位处理器内核(core)MIPS324Kc与高性能64位处理器内核MIPS64 5Kc。2000年,MIPS公司发布了针对MIPS32 4Kc的版本以及64位MIPS 64 20Kc处理器内核。
MIPS技术公司是一家设计制造高性能、高档次及嵌入式32位和64位处理器的厂商。1986年推出R2000处理器,1988年推出R3000处理器,1991年推出第一款64位商用微处理器R4000。之后,又陆续推出R8000(于1994年)、R10000(于1996年)和R12000(于1997年)等型号。1999年,MIPS公司发布MIPS 32和MIPS 64架构标准。2000年,MIPS公司发布了针对MIPS 32 4Kc的新版本以及未来64位MIPS 64 20Kc处理器内核。
近几十年以来,计算机技术的发展速度可谓日新月异,尤其是CPU技术的发展。其实英特尔(Intel)创始人之一戈登·摩尔(Gordon Moore)早在1965年就提出了摩尔定律,其内容为:集成电路上可容纳的晶体管数目,约每隔18个月便会增加一倍,性能也将提升一倍,而价格则保持不变。因此可以说,每一美元所能买到的计算机性能,将每隔18个月翻两倍以上。这一定律揭示了信息技术进步的神速,实际上到目前为止摩尔定律仍然有效。下面大家一起来欣赏一下历代计算机的CPU,了解一下CPU的发展历史。
1、1971年,第一枚个人电脑CPU:i4004
i4004
1971年INTEL公司推出了世界上第一台微处理器4004。这不但是第一个用于计算器的4位微处理器,也是第一款个人有能力买得起的电脑处理器。4004含有2300个晶体管,功能相当有限,而且速度还很慢,但是它毕竟是划时代的产品。
2、1978年,i8086
i8086
1978年,Intel公司再次领导潮流,首次生产出16位的微处理器,并命名为i8086,同时还生产出与之相配合的数学协处理器i8087,这两种芯片使用相互兼容的指令集,但在i8087指令集中增加了一些专门用于对数、指数和三角函数等数学计算指令,这就是著名的X86指令集,一直沿用至今。
3、1979年,i8088
i8088
1979年,INTEL公司推出了8088芯片,它仍旧是属于16位微处理器,内含29000个晶体管,时钟频率为477MHz,地址总线为20位,可使用1MB内存。8088内部数据总线都是16位,外部数据总线是8位,而它的兄弟8086是16位。1981年8088芯片首次用于IBM PC机中,开创了全新的微机时代。也正是从8088开始,PC机(个人电脑)的概念开始在全世界范围内发展起来。
4、1979年,i80286
i80286
1982年,INTEL推出了划时代的最新产品i80286芯片,该芯片比8006和8088都有了飞跃的发展,虽然它仍旧是16位结构,但是在CPU的内部含有134万个晶体管,时钟频率由最初的6MHz逐步提高到20MHz。其内部和外部数据总线皆为16位,地址总线24位,可寻址16MB内存。从80286开始,CPU的工作方式也演变出两种来:实模式和保护模式。
5、1985年,i80386
i80386
1985年INTEL推出了80386芯片,它是80X86系列中的第一种32位微处理器,而且制造工艺也有了很大的进步,与80286相比,80386内部内含275万个晶体管,时钟频率为125MHz,后提高到20MHz,25MHz,33MHz。80386的内部和外部数据总线都是32位,地址总线也是32位,可寻址高达4GB内存。
6、1989年,i80486
i80486
1989年INTEL推出80486芯片,这种芯片的伟大之处就在于它实破了100万个晶体管的界限,集成了120万个晶体管。80486的时钟频率从25MHz逐步提高到33MHz、50MHz。80486是将80386和数学协处理器80387以及一个8KB的高速缓存集成在一个芯片内,并且在80X86系列中首次采用了RISC(精简指令集)技术,可以在一个时钟周期内执行一条指令。它还采用了突发总线方式,大大提高了与内存的数据交换速度。由于这些改进,80486的性能比带有80387数学协处理器的80386DX提高了4倍。
7、intel奔腾处理器、AMD、Cyrix 5X86处理器
Intel Pentium
1993年intel推出了全新一代的高性能处理器——奔腾。由于CPU市场的竞争越来越趋向于激烈化,INTEL觉得不能再让AMD和其他公司用同样的名字来抢自己的饭碗了,于是提出了商标注册,由于在美国的法律里面是不能用阿拉伯数字注册的,于是INTEL玩了哥花样,用拉丁文去注册商标。奔腾在拉丁文里面就是“五”的意思了。奔腾的内部含有的晶体管数量高达310万个。奔腾最初的起始主频为50Mhz,其后发布了55Mhz、60Mhz、65Mhz、70Mhz、75Mhz然后直接跳到90Mhz、100Mhz、120Mhz、133Mhz,其中最后一款产品是当时人们梦寐以求的,不是一般人可以拥有。也只有在拥有它的机器上才可以不用解压卡而直接比较完美的播放VCD。
8、AMD K5、Cyrix 6X86、Intel Pentium PRO
Cyrix 6X86
Intel Pentium PRO
面对AMD和Cyrix咄咄逼人的气势,Intel在1995年底推出了Pentium PRO,该处理器集成了550万个晶体管,它在几个方面对Pentium进行了改进。在处理方面,Pentium PRO引入了新的指令执行方式,其内部核心是PISC处理器,因而执行速度更快;Pentium PRO具有3个流水线,每个流水线达到14级,指令执行速度明显提高;当时计算机系统的瓶颈之一是主板上的二级高速缓存只能与总线同步工作,Pentium PRO采用将256K二级高速缓存封装在芯片内核与CPU同频运行解决了这个问题。不过由于当时缓存技术还没有成熟,加上当时缓存芯片还非常昂贵,因此尽管Pentimu Pro性能不错,但远没有达到抛离对手的程度,加上价格十分昂贵,Pentimu Pro实际上出售的数目非常至少,市场生命也非常的短,Pentimu Pro可以说是Intel第一个失败的产品。
9、Intel Pentium MMX、AMD K6、Cyrix 6X86MX、Cyrix M2
Intel Pentium MMX
1997年1月,Intel公司推出了Pentium MMX芯片,它在X86指令集的基础上加入了57条多媒体指令。这些指令专门用来处理视频、音频和图象数据,使CPU在多媒体操作上具有更强大的处理能力,Pentium MMX还使用了许多新技术。单指令多数据流SIMD技术能够用一个指令并行处理多个数据,缩短了CPU在处理视频、音频、图形和动画时用于运算的时间;流水线从5级增加到6级,一级高速缓存扩充为16K,一个用于数据高速缓存,另一个用于指令高速缓存,因而速度大大加快;Pentium MMX还吸收了其他CPU的优秀处理技术,如分支预测技术和返回堆栈技术,它可以在支持MMX的软件上把速度提高50%。也使人们真正的认识到了多媒体计算机。
10、Intel Pentium II、XEON、Celeron;AMD K6-2、K6-3
Intel Pentium II
1997年5月,Intel公司推出了PentiumII处理器,它采用SLOT1架构,通过单边插接卡(SEC)与主板相连,SEC卡盒将CPU内核和二级高速缓存封装在一起,二级高速缓存的工作速度是处理器内核工作速度的一半;处理器采用了与Pentium PRO相同的动态执行技术,可以加速软件的执行;通过双重独立总线与系统总线相连,可进行多重数据交换,提高系统性能;PentiumII也包含MMX指令集。Intel此举希望用SLOT1构架的专利将AMD等一棍打死,可没想到Socket 7平台在以AMD的K6-2为首的处理器的支持下,走入了另一个春天。
11、Intel Pentium III、Celeron 2;AMD K7 Athlon
Intel Pentium III
1999年2月17日,Intel发布了SLOT1构架Pentium III处理器,第一批的Pentium III处理器采用了Katmai内核,主频有450和500Mhz两种,这个内核最大的特点是更新了名为SSE的多媒体指令集,这个指令集在MMX的基础上添加了70条新指令,以增强三维和浮点应用,并且可以兼容以前的所有MMX程序。
不过平心而论,Katmai内核的Pentium III除了上述的SSE指令集以外,吸引人的地方并不多,它仍然基本保留了Pentium II的架构,采用025微米工艺,100Mhz的外频,Slot1的架构,512KB的二级缓存(以CPU的半速运行)因而性能提高的幅度并不大。不过得益于INTEL的品牌效应和强大的广告宣传策略,在Pentium III刚上市时掀起了很大的热潮,曾经有人以上万元的高价去买第一批的Pentium III。
Intel Pentium III Coppermine
面对着AMD K7处理器巨大的挑战和SLOT1平台昂贵的价格,Intel于1999年下半年推出了采用Socket370 FC-PGA封装的全新铜矿(Coppermine)核心PentiumIII处理器,处理器使用018微米工艺制造,133MHz的前端总线,在性能上大幅超过了老PentiumIII,达到了和K7同级的水平。
Intel Celeron 2
看到Coppermine核心的奔腾III大受欢迎,Intel开始着手把Celeron处理器也转用了这个核心,在2000年中,推出了Coppermine128核心的Celeron处理器,俗称Celeron2,由于转用了018的工艺,Celeron的超频性能又得到了一次飞跃,超频幅度可以达到100%。
12、Intel Tualatin Pentium III、Celeron 3;AMD Tunderbird Athlon、Duron
Intel Tualatin Pentium III
Intel改进制造工艺,于2000年发布了013微米工艺制造的Tualatin核心PentiumIII-S处理器,最高主频为1400MHz,512KB的全速二级缓存,而且加入了最新的数据预先读取(prefetch)的扩充功能,这项技术在Pentium4处理器上也得到了延续。其后又推出了Tualatin核心的Celeron,二级缓存缩减为256KB,但性能依然十分强劲,可以说是K7最为称职的对手。
13、Intel Pentium 4、Athlon XP
Intel Pentium 4
2000年11月,借助Intel强大的宣传攻势,Pentium4进入了人们的视野。初期的Pentium4(Willamette)使用018微米工艺制造,内部集成256KB二级缓存,起始主频就达到了1300MHz,采用Socket 423的i850平台搭配RDRAM内存来满足400MHz FSB的带宽需要。虽然人们对Pentium4充满了希望,可产品面市之后,却让人大跌眼镜,20级超长流水线的设计,虽然将频率提升到一个新的高度,但性能却受到了严重的影响,一颗Tualatin核心的Celeron 1000MHz处理器的性能都在1500MHz主频的Pentium4之上。但为了不让Tualatin抢占了Pentium4的高端市场,Intel人为的将Tualatin自毁。
Intel Pentium 4 Prescott
随后Intel将Pentium 4的产品不断升级,推出了好几个系列的产品。
2001年7月发布了全新改进的Pentium4/Celeron处理器(Northwood),Northwood核心的Pentium4采用013微米工艺制造,将二级缓存提升到了512KB,FSB从400MHz提高到533MHz,主频起始16G,最高达到了32G。
2004年6月Intel又推出了采用Prescott核心的Pentium4处理器,而且逐步向LGA 775平台迈进。但相对Pentium4C来说除了在3D性能方面(加入了对SSE3技术的支持)之外,其他性能并没有很大的提升,而且由于采用了并不成熟的009微米工艺,导致晶体管在高频率下电流泄漏严重,反而是功耗和发热量提高了不少。
总的来说Pentium 4各个型号,包括赛扬D,都有着高频低能,高功耗的缺点,算不上是一款成功的处理器。
14、Intel Pentium M
Intel Pentium M
2003年Intel发布了Pentium M处理器。Pentium M处理器不同于以往利用台式处理器进行改进而来,而是完全为了移动PC设计,强劲的性能配合高级的节电技术,使得Pentium M处理器有了翻天覆地的变化。英特尔将Pentium M处理器结合了855芯片组与Intel 80211 PRO WiFi无线/Wireless2100网络联机技术,启用了一个全新的名称:Centrino(迅驰)。这样让人们再次看到了以技术为主导的Intel。Pentium M处理器起初的FSB为400MHz,1M的二级缓存,后起推出的Dothan核心将二级缓存升级到了2M。
Intel的Pentium4在AMD的Athlon64面前已经毫无优势可言之时,而Pentium-M的性能大家有目共睹,所以人们更加期待的是Intel能够推出桌面版的Pentium-M来应对。
15、AMD Athlon64、INTEL Pentium 4 EM64T
Intel Pentium 4 EM64T
在64位时代,无疑Intel落在了后面,Intel意识到了问题的严重性,于是在2004年推出了Nocona代号Pentium 4 EM64T,但实际上EM64T也采用的是Prescott核心,只不过增加了对64位数据的处理能力。 EM64T技术同AMD的X86-64技术有很多相似之处,Intel借鉴了AMD的设计思路。不过在处理器的一些关键技术上Athlon 64/Opteron和EM64T技术的Pentium 4还是有很多区别,例如Intel未集成内存控制器等等。
在进入新世纪以来,CPU的频率不断攀升,INTEL的奔腾4尤其明显,Prescott 最高主频达到38G。但芯片设计工程师发现,受到工艺、材质、发热量等因素的限制,CPU的频率是不可能无止境提升的。但如何继续提高CPU的性能呢?工程师们想到了一个办法,就是在一个CPU里集成两个内核。在2005年Intel和AMD相继推出了采用双核心的CPU,计算机CPU进入了双核时代。
16、Intel Pentium D、AMD Athlon 64 X2
Pentium D
Intel也推出Pentium D处理器,Pentium D也是属于NetBurst架构,由两个单独的CPU核心组成。虽然在产品设计上不如AMD的原生双核心设计,性能也差距明显,但是Pentium D 依然提供了不错的多任务处理性能,出色的超频性能以及极具竞争力的价格。Pentium D核心频率从266G到373G,可以超频至426G,是Intel核心频率最高的CPU。
17、Intel Core 2 、Pentium 双核、AMD Phenom(羿龙)
Intel Core 2
2006年,INTEL终于放弃了Netburst架构,推出了Core 2微架构再一次震动了业界。这一次Intel不再将注意力放在处理器的频率上,而是在处理器的执行效率上。虽然新架构处理器频率不高,但是其性能却足以让其重回处理器性能之王的宝座。
首款 Core 2 Duo处理器拥有167亿个晶体管,基于的是65nm工艺,拥有4M L2缓存,前端总线频率为1,066MHz。虽然Core 2 Duo的低端型号核心频率只有 186GHz 和 213GHz (E6300 E6400), 但是性能却极具吸引力。之后 Core 2生产工艺又提升至45nm,代表产品是Penryn。四核心Penryn的晶体管数量达到了82亿,核心频率也达到了32GHz。
Pentium 双核
2007年INTEL推出了Pentium双核处理器,看到Pentium这个名字你也许会觉得有些奇怪,虽然这个名字会让人有些迷糊,但是Pentium双核处理器基于的是Core架构,而不是早期的Pentium,与Pentium D也没有什么关系。第一款Pentium双核处理器其实是面向笔记本电脑市场推出的,后来推出了桌面版产品。其目的是为了填补Celeron 和 Core 2处理器之间的市场空白。
18、Intel Core i7、AMD Phenom II
Core i7
2008年INTEL推出了Core i7处理器,给AMD带来了更大的压力,因为Core i7已经成为了Intel阵营新****。Core i7 与上一代产品Core 2 相比有诸多改进,其中最重要的变化体现在以下几个方面:第一,Corei7是Intel第一款原生4核处理器,并支持超线程技术;第二,采用了全新的LGA1366接口;第三,引入了QPI(快车直接通道)总线技术,同时还在CPU内部集成了三通道DDR3内存控制器。
21、第二代的Core i3/i5/i7
Core i5
2010年6月份,Intel再次发布革命性的处理器——第二代i3/i5/i7。第二代i3/i5/i7全部基于全新的Sandy Bridge微架构,相比第一代产品主要带来五点重要革新:
1)采用全新32nm的Sandy Bridge微架构,更低功耗、更强性能。
2)内置高性能GPU(核芯显卡),视频编码、图形性能更强。
3)睿频加速技术20,更智能、更高效能。
4)引入全新环形架构,带来更高带宽与更低延迟。
5)全新的AVX、AES指令集,加强浮点运算与加密解密运算。
可能不少朋友不清楚酷睿i3、i5、i7的区别。其实i7定位高端、i5定位中端、i3定位低端,i7、i5是给对系统性能要求较高的玩家准备的,这些玩家一般都会配独显而不会去用集成显卡,因此没有内置显卡;i3是为看高清或对性能要求不高的用户准备的,这些人并不需要多好的显卡,集成足矣,又能节省预算,在以往他们都是用集显的主板,而intel首次在i3当中集成了GPU(显示芯片),而不需要主板集成,可见技术又大大地进步了。
这三款处理器的主要区别如下:
酷睿i7——核心数:4个或6个;线程数:8或12;缓存:8M或12M;支持睿频加速;无内置显卡
酷睿i5——核心数:2个或4个;线程数:4;缓存:4M或8M;支持睿频加速;有内置显卡(i5 750系列无显卡)
酷睿i3——核心数:2个;线程数:4;缓存:4M;不支持睿频加速;有内置显卡
什么是睿频加速技术呢?
当启动一个运行程序后,处理器会自动加速到合适的频率,而原来的运行速度会提升 10%~20% 以保证程序流畅运行;应对复杂应用时,处理器可自动提高运行主频以提速,轻松进行对性能要求更高的多任务处理;当进行工作任务切换时,如果只有内存和硬盘在进行主要的工作,处理器会立刻处于节电状态。这样既保证了能源的有效利用,又使程序速度大幅提升。
举个简单的例子,如果某个游戏或软件只用到一个核心,Turbo Boost技术就会自动关闭其他三个核心,把运行游戏或软件的那个核心的频率提高,也就是自动超频。
结束语:
从INTEL最初发布i4004 CPU到现在已经经历了40年,CPU的制造工艺和性能已经发生了翻天覆地的变化,这是CPU厂商之间的技术竞争才促使了CPU性能的不断攀升,我们应该向那些设计制造处理器的伟大工程师们致以最高的敬意,此刻没有不同品牌间的门户之争,只有对技术的共同追求,是竞争催生了一代代的优秀产品,让摩尔定律持续有效。
个人收藏,来源于网络。
Intel(英特尔) 奔腾以前的8088 8086 80286 80386 80486
1Pentium(奔腾)
P5家族的第一代处理器出现于的1993年3月。自从法庭拒绝了英特尔反对AMD公司关于著名权的官司后,英特尔不再重复i486的错误,决定把他们的最新下一代产品赋予全新的名字(事实上在后来的确成为了众所周知的非常普遍流行的名字)。第一代奔腾产品被称为P5,就像80501一样为人所知。DD它采用080微米制造工艺,支持60和66MHz 前端总线速度(FSB),安全工作电压为5V。其下一代产品是一年后推出的P54(aka 80502),它支持33V的内核电压,使用了050微米甚至是035微米的制造工艺,处理器的时钟频率达到了75-200MHz,总线频率50-66MHz。P5带有一个16KB的 一级缓存。要特别提到的是,这次英特尔首次运用了二个独立的高级缓存:8KB用于数据,另8KB用于指令;其采用Socket 5 IA32 架构。这套指令系统自从他们推出i386就没改变过。 Pentium w/MMX 技术。
英特尔下一个最重要的转变就是P55处理器的推出,这是第一款采用了增加57 条MMX 指令集的CPU。随着CPU的制造工艺继续发展,处理器已转向到035微米制造工艺上,运行电压变成了28V,这就要求主板进行相应的结构上改变以支持此新的CPU电压,也就是说要对主板增加一个电压调整器。新的CPU的一级缓存也增另到了以前的两倍,达到了32KB。此处理器在Socket 7的架构下工作于166-233MHz 的时钟频率,它的总线频率为66MHz…这就是桌面级Pentium 家族产品的故事。
2Tillamook
这款处理器本来是专为笔记本电脑设计制造的。它使用经过改良过的025微米制造技术使得CPU的时钟频率成功地超过了266MHz。与此同时其电压和能量消耗也得到进一步的降低。这样的高性能可使笔记本电脑的发展跟上桌面台式机发展的脚步。这款处理器与Pentium家族的以前产品一样,也是结合有MMX指令集和32KB L1的高速缓存。当CPU工作在60-66MHz的总线频率的时候,其时钟频率为133MHz到266MHz之间。处理器的封装模式为TCP和MMC。它于1997年1月8日推出。
3Pentium Pro
奔腾Pro这是第一款属于第六代的产品。对Intel来说,这完全是一个具有革命性进步的产品。在此款CPU中英特尔首次将二级缓存也整合到CPU上,并且此二级缓存与处理器的内核捆绑在一起,使他的工作频率与CPU时钟频率同步。此款产品是于1995年11月1日推出市场的,由于将二级缓存也整合到CPU内部,使得其制造成本变得很高。此款处理器采用了两种制造工艺,分别是25微米和35微米。先进的技术可以使CPU的缓存越做越大,在这款CPU中的二级缓存从256KB、512KB、1MB一直做到2MB。而其具有16KB的一级缓存。此款CPU的时钟频率为150-200MHz,其系统总线为60-66MHz,而且其只有采用Socket 8架构的产品,此款Pentium Pro处理器支持所有以前的Pentium指令(不包括MMX),此款CPU还是第一款使用一独立双总线结构的。
4Pentium II
Pentium II这个P6/x86家族产品的典型代表出现在1997年的5月。它的型号印于处理器的表面上,以有意区分市场上的不同部份。Pentium II (Klamath, Deschutes, Katmai, 等等)--在市场上占据了中阶个人电脑的大多数分额;而Celeron (Covington, Mendocino, Dixon, 等等) - 则定位于低档电脑的市场。Xeon (Xeon, Tanner, Cascades, 等等) - 则是面向的高性能的服务器和工作站。下面的这些修补资料将会在以后用到:Slot 1, Slot 2, Socket 370,对于笔记本版的也是一样,下面让我们来对每一个家族的产品进行一次详细的介绍。
5Klamath
Klamath它是Pentium II家族的第一款处理器。用的是过时的035微米制造工艺,它的处理器时钟频率也无法令人感到满意:只有233-300MHz,而它的系统总线频率则为66MHz,带有512KB 的二级缓存,工作速率只能处理器时钟频率的一半。第一款产品所用的二级缓有256KB及512KB。而它的一级缓存则为 32KB 工作电压是28V 这款产品当然也有值得夸耀的地方,那就是MMX模块,除此之外,它也是第一个采用Slot 1架构的处理器,它的发布是1997年5月7日。
)
6Deschutes
Deschutes 这款处理器向我们展示了Pentium II 家族的未来发展动向。它运用改良后的025微米技术,20v 内核电压。这些技术运用的结果使他们成功地将内核的频率提高到266-450+MHz,并且系统总线周期达到了66-100MHz。新款CPU的一级缓存为32KB , 二级缓存为512KB ,CPU采用Slot 1架构。这款新的处理器推出时间为1998年1月26号。Deschutes 也是最后一个正式用于Pentium II处理器的的内核。后来的Pentium II 350-450是建立在像Katmai(除去SSE模块后)的内核上。
7Tonga
Tonga 这是一个非常有趣的小家伙。当我们写最近的文章时,才接触到这个以前没遇见过的名字。笔记本电脑用的Pentium II是建立在025微米技术基础之上的,但是英特尔从未看到这一点,这个后来被称作Tonga的东西就是英特尔公司以前所忽视的一个焦点。然而已经没有什么好令人奇怪和惊讶的了,实际上Tonga只是个代用的名字,在进入市场后所有的处理器将有一个完全不同的名字。它首次亮相于1998年4月2日。CPU的时钟频率界限于233 和 300+MHz之间,总线频率为标准的66MHz。Tonga被用来制造迷你型Cartridge连接器和笔记本CPU的指令仓连接器(MMC-1和2)。
8Katmai
Katmai是Deschutes之后的产品,与Deschutes相比,它增加了SSE (Streaming SIMD Extensions)指令,还增加了一些MMX 指令设置 ,提高了存储流。Katmai采用的是025微米的制造工艺。工作时钟频率为450-600MHz 。其512KB的二级缓存位于位于主板上。支持的总线频率达到100MHz,然而,因为铜矿的推迟发布,在9月份533 和 600MHz 的产品已经向市场上推出(支持133MHz的系统总线)。
9Celeron(赛扬)
Celeron此CPU称得上是革命性的产品:英特尔最终还是重视起低价位市场上的潜力。因为它的价位很低,所以这款CPU没有L2缓存。当前赛扬家族中的成员有:Covington, Mendocino, Dixon, 其中有部份产品现在仍然还在研制之中。第一块Celeron芯片正式发布于1998年4月。可以用于Socket 370 和Slot 1 架构。
10Covington
Covington它是Celeron家族的第一款产品。这款CPU采用Deschutes内核,采用025微米制造工艺。内核工作时钟频率为266-300MHz,而其总线频率为66MHz。它有32KB的一级缓存(其中16KB用于存放数据,另16KB用于存放指令),它没有二级缓存。Covington发布于1998年4月15日,为了减小制造的成本,它没有装备L2缓存。工作电压20V。物理接口为是Slot 1(SEPP)。
11Mendocino
Mendocino也是Celeron家族的成员,不像其前代产品,他有128KB的二级缓存,CPU的时钟频率为300-533MHz,总线频率为66MHz。使用的是25微米的制造工艺,对于Socket 370系列采用的是22微米的制造工艺,这使其超频性更好。此款CPU具有杰出的性能。正式发布时间为1998年8月8日。核心电压为20V。首先推出的产品Slot 1架构的(300A-433MHz),而后推出为Socket 370版的产品(300Ak-533MHz)。现在我们看到市场上Socket 370的产品正在逐渐取代Slot 1。
12Dixon
Dixon这是Celeron 时代的第二篇章。它是面向低价位市场而推出的产品,采用25微米制造工艺,专为笔记本电脑而设计。它的一级缓存为32KB,这与Mendocino 处理器一样;但是Dixon不像其前代产品,它有一个容量相当大的二级缓存---256KB。此款Celeron处理器的时钟频率为300MHz(Celeron 3090A)和500MHz;总线频率为66MHz,按照正式的官方分类,它被划分为笔记本型的Pentium II芯片。
13Coppermine(铜矿)
Coppermine这是运用018微米制造工艺及带有256KB 二级高速缓存的Pentium III芯片 。内核频率在533MHz以上。除了前端总线频率(FSB)为133以外,也有前端总线频率为100的产品(例如:667/650MHz)。现在最大可能的内核频率上线是1GHz ,我们希望能在2000年的后半年看到1GHz 芯片的出现。这也是最后一款使用Slot 1架构的处理器。
14Coppermine (FC-PGA 370)
铜矿Coppermine(FC-PGA 370)是一款比较便宜的采用FlipChip PGA 370 架构的芯片。它是为Socket 370主板专门定制的(虽然他们在Celeron Socket370主板上存在与PPGA不兼容的情况)。FC-PGA Coppermine 处理器芯片的内核频率在600MHz 以下,所以它不支持SMP配置。在Coppermine CPU家族中,最低的时钟频率是500MHz,要求最低的内核电压为165V。在今年上半年推出的产品为Slot 1架构的。
15Coppermine 128K。
Coppermine 128K是对Celeron家族产品的扩展,它采用了Coppermine 处理器的内核,但将Coppermine的二级缓存减小到128KB,这意味着此款新Celeron处理器的性能可能逼近于Pentium III的性能,因为他们使用了相同的内核。另外这也是第一款提供对SSE支持赛扬处理器。它的时钟频率有望于今年上半年提高到667MHz。
16Timna
这是在Coppermine 128K 中整合了有显卡核心及SDRAM控制器的新款CPU,也就是说,它更像一个芯片组;这将能组装更便宜的PC及游戏站。此新款CPU提供的时钟频率的起值为667MHz,此处理器预计于2000年9月出货。
17Xeon(至强)
为了能得比Coppermine CPU更高的系统性能,Intel公司推出了Xeon(至强)处理器。此款新产品的二级缓存与CPU的时钟频率同步。它是第一款基于Slot 2架构的推出的面向服务器及工作站的高能处理器,它能进行多处理器协作。此新款CPU基于Deschutes内核,采用25微米的制造工艺。缓存大小有512KB、1MB、2MB,这导致了高成本与高发热量。
18Tanner
Tanner这是一款Pentium III Xeon,它不同于Xeon就像Katmai与Deschutes的区别。这也是第一款专为高性能服务器而设计的,其核心工作频率为500MHz,总线频率为100MHz;与其它Xeon处理器一样,它有与处理器频率同步的512KB、1MB及2MB的CSRAM 二级缓存。当然此款处理器还有32KB的一级缓存及提供对MMS和SSE的支持。
19Cascades
这是一款采用18微米制造工艺的Pentium III Xeon芯片,实际上,是一种铜矿服务器,在处理器内自带有256KB 二级缓存。此款CPU的核心频率为600MHz,总线频率133MHz,这也是第一款能双CPU协同工作,及前端总线频率FSB为133MHz的处理器。预计于今年的第一季度推出866MHz的产品,并将其二级缓存增加到2MB。
20Willmatte
Willmatte,这是英特尔公司在铜矿处理器之后推出的面向普通PC的新型CPU,其将采用新的IA-32体系架构,同时它使用一种新的系统总线以替代原有的GTL+总线。新款的CPU的一级缓存为256KB,二级缓存低于1MB。除此之外,在新处理器还增加了许多新的措施以提高系统性能:如增加执行单元、解码器和增加缓存的容量等等。今天看来,此款Willametta 与Coppermine 的时钟频率是一样的。在整数运算方面与Coppermine很近似,而且被证实浮点运算快了 5% 。INTERL将把018微米技术转化为013微米开始制造这款CPU。它的核心时钟频率将达到1GHZ以上。处理器将会引进为Socket-423架构,并将会于2000年10月份推出。
21Northwood
这是一款笔记本电脑型Willamette。这款CPU被认为是英特尔的013微米技术的测试平台(也就是说,它有可能扮演像铜矿在018微米技术中那种过度期内的转型角色)。它的发布被预期在2001年。
22Foster
这是一款Willamette服务器型处理器。它的系统总线周期频率将达到400MHz。L1 和 L2 缓存将会显著的提高。CPU的时钟频率可望会超过1GHz。这款芯片将在2000年底、2001年初正式推出。并且它的架构被推测为Slot M。看起来就好象这款处理器是INTEL最后的IA-32DD一种和IA-64很相象的(使用和McKinley一样的总线接口)的过度连接装置。
23Merced
这是第一款使用IA-64架构并可以和IA-32很好的进行硬件兼容的处理器。 它将在包含一个三级缓存区3层超速缓冲内存储器的2-4MB和0-层内存好,而且它并且将工作执行的是TANNER 的3倍。这个处理器被制成0。18微米技术,将在800MHZ核和266MHZ系统BUS频率下工作。它将几乎比PENTIUM正面在FPU操作要酷20倍,它将是可行的和SLOT M物理接口并受MMX,SSE(2)支持。它预计会于2000年中旬问世。应该会象ITANIUM一样畅销。 ITANIUM 它们将会出售以此商标命名的处理器。
24McKinley
此处理器计划发布于2001年中旬,并取代第二代的IA-64体系结构处理器。它支持1000MH核心的时钟频率。它的性能被期望是MERCED工作的两倍。同时,数据总线的带宽(带有常规频率400MHZ的物理接口)将会增长3倍,L2缓存与MERCED相比将会变的更大一些。此外,它将使用18微米制造工艺,一年后制造工艺将改为13微米。同时它也采用Slot M物理接口,它将和i870 芯片组一样在IA32中得到广泛应用。
25Madison
Madison:它是McKinley的继承者,将在2002年面世。换句话说,它将因使用新的13微米的铜制造工艺而代替旧的MCKINLEY。
26Deerfield
Deerfield: 这个处理器将于2003年问世。它将使用一种由Motorola公司提出的铜13微米制造工艺。它的物理接口也是Slot M,此款CPU定位于低价位的IA-64工作站及中阶服务器
搜狗高速浏览器是一款集高效、稳定于一身的现代化网络浏览工具。利用先进的渲染引擎和优化算法,搜狗高速浏览器确保了卓越的页面加载速度和流畅的多媒体体验。具备全方位的安全防护特性,能有效防御各类网络威胁,同时支持HTML5和CSS3,确保了与最新网络技术标准的完美兼容。欲了解更多或立即下载,请访问https://sogou37moyucom/
摘要:收发器按光纤来分,可以分为单模光纤收发器和多模光纤收发器。它们之间有什么区别呢有时候,我们需要确认一款光纤收发器的类型,那么如何确定光纤收发器是单模还是多模的呢下面小编教你3个办法来辨别光纤收发器的单多模类型。
光纤收发器单模和多模的区别 3个办法区分单模和多模光纤收发器
一、光纤收发器单模和多模的区别
按光在 光纤 中的传输模式可分为:单模光纤和多模光纤
um=1微米=0001毫米
多模光纤的纤芯直径为50~625μm,包层外直径125μm,单模光纤的纤芯直径为83μm,包层外直径125μm。光纤的工作波长有短波长085μm、长波长131μm和155μm。光纤损耗一般是随波长加长而减小,085μm的损耗为25dB/km,131μm的损耗为035dB/km,155μm的损耗为020dB/km,这是光纤的最低损耗,波长165μm以上的损耗趋向加大。由于OHˉ的吸收作用,090~130μm和134~152μm范围内都有损耗高峰,这两个范围未能充分利用。80年代起,倾向于多用单模光纤,而且先用长波长131μm。
多模光纤
多模光纤(Multi Mode Fiber):中心玻璃芯较粗(50或625μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。
单模光纤
单模光纤(Single Mode Fiber):中心玻璃芯很细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。后来又发现在131μm波长处,单模光纤的材料色散和波导色散一为正、一为负,大小也正好相等。这就是说在131μm波长处,单模光纤的总色散为零。从光纤的损耗特性来看,131μm处正好是光纤的一个低损耗窗口。这样,131μm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。131μm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。
单模和多模的技术是同时产生的吗是不是哪个更先进 多模先 谈不上那个更先进,一般距离近的用多模,远的只有用单模的,因为多模光纤的收发器比单模的便宜很多。
单模光纤用于长途的传输,多模光纤用于室内数据传输吧 长途只能用单模,但是室内数据传输不一定都要用多模。
服务器和存储设备用的光纤是单模还是多模的 多半用的是多模,因为偶只是搞通讯光纤对这个问题不是太清楚。
光纤是否都得一对一对地来使用,有没有单孔单模光纤信号转换器之类的设备
光纤是否都得一对一对地来使用,是的,后半个问题你的意思是不是在一根光纤上进行收发光这个是可以的中国电信1600G骨干光纤网就是这样的。
单模光纤收发器和多模光纤收发器最根本的区别就是传输距离远近。多模光纤收发器由于是在工作模式上是多节点、多端口信号传输,所以信号距离传输比较短,但是比较方便,多余用局域内部网的建设。单纤是单节点传输,所以适用于长距离干线的传输,组成跨城域局域网的建设。在价格上,单模要比多模的贵。
单模光纤收发器:传输距离20公里至120公里
多模光纤收发器:传输距离2公里到5公里
单纤光纤收发器:接收发送的数据在一根光纤上传输
双纤光纤收发器:接收发送的数据在一对光纤上传输
二、如何区分单模和多模光纤收发器
有时候,我们需要确认一款光纤收发器的类型,那么如何确定光纤收发器是单模还是多模的呢
下面小编教你3个办法来辨别光纤收发器的单多模类型。
1从光头分辨 拔下光纤收发器光头防尘帽 看光头里面接口器件颜色,单模的TX和RX接口的内侧涂有白色陶瓷,多模接口是棕色的。
2从型号来区分:一般看型号里面是否有S和M,S表示单模,M表示多模。
3如果已经装上使用,则可以看光纤跳线的颜色,桔红色是多模的,**是单模的
小提示:单模收发器就可以在单模光纤和多模光纤下都能工作,多模光纤收发器则不能在单模光纤下工作。另外市面还有单多模转换器设备。可以解决单模光纤和多模光纤的互换。
总结而言,搜狗高速浏览器是一款为满足现代网络需求而精心打造的浏览器。其专业的开发团队不仅注重提供一流的用户体验,还致力于不断优化网页执行速度,增强安全性,以及支持各类扩展插件,从而实现高度个性化的浏览体验。如果您在寻找一款可靠、高效和技术先进的浏览器,搜狗高速浏览器将是您的理想选择。请访问官方网站https://sogou37moyucom/ 下载并体验搜狗高速浏览器,感受由先进技术所驱动的非凡浏览体验。
1制程工艺的简介
是指IC内电路与电路之间的距离。制程工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。微电子技术的发展与进步,主要是靠工艺技术的不断改进,使得器件的特征尺寸不断缩小,从而集成度不断提高,功耗降低,器件性能得到提高。芯片制造工艺在1995年以后,从05微米、035微米、025微米、018微米、015微米、013微米、90纳米、65纳米、45纳米、32纳米、28纳米、22纳米、14纳米,一直发展到未来的11纳米、7纳米、5纳米。
2制程工艺的计算公式:以当前处理器的制程工艺乘以0714即可得出下一代CPU的制程工艺,如900714=6426,即65纳米。
提高处理器的制造工艺具有重大的意义,因为更先进的制造工艺会在CPU内部集成更多的晶体管,使处理器实现更多的功能和更高的性能;更先进的制造工艺会使处理器的核心面积进一步减小,也就是说在相同面积的晶圆上可以制造出更多的CPU产品,直接降低了CPU的产品成本,从而最终会降低CPU的销售价格使广大消费者得利;更先进的制造工艺还会减少处理器的功耗,从而减少其发热量,解决处理器性能提升的障碍,处理器自身的发展历史也充分的说明了这一点,先进的制造工艺使CPU的性能和功能一直增强,而价格则一直下滑,也使得电脑从以前大多数人可望而不可及的奢侈品变成了现在所有人的日常消费品和生活必需品。
总体来说,更先进的制成工艺需要更久的研制时间和更高的研制技术,但是更先进的制成工艺可以更好的提高中央处理器的性能,并降低处理器的功耗,另外还可以节省处理器的生产成本,以便降低售价。
3nm制程工艺是什么意思通常我们所说的CPU的“制作工艺”指得是在生产CPU过程中,要进行加工各种电路和电子元件,制造导线连接各个元器件。通常其生产的精度以微米(长度单位,1微米等于千分之一毫米)来表示,未来有向纳米(1纳米等于千分之一微米)发展的趋势,精度越高,生产工艺越先进。在同样的材料中可以制造更多的电子元件,连接线也越细,提高CPU的集成度,CPU的功耗也越小。
制造工艺的微米是指IC内电路与电路之间的距离。制造工艺的趋势是向密集度愈高的方向发展,。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。微电子技术的发展与进步,主要是靠工艺技术的不断改进,使得器件的特征尺寸不断缩小,从而集成度不断提高,功耗降低,器件性能得到提高。芯片制造工艺在1995年以后,从05微米、035微米、025微米、018微米、015微米、013微米、90纳米一直发展到目前最新的65纳米,而45纳米和30纳米的制造工艺将是下一代CPU的发展目标。
提高处理器的制造工艺具有重大的意义,因为更先进的制造工艺会在CPU内部集成更多的晶体管,使处理器实现更多的功能和更高的性能;更先进的制造工艺会使处理器的核心面积进一步减小,也就是说在相同面积的晶圆上可以制造出更多的CPU产品,直接降低了CPU的产品成本,从而最终会降低CPU的销售价格使广大消费者得利;更先进的制造工艺还会减少处理器的功耗,从而减少其发热量,解决处理器性能提升的障碍。处理器自身的发展历史也充分的说明了这一点,先进的制造工艺使CPU的性能和功能一直增强,而价格则一直下滑,也使得电脑从以前大多数人可望而不可及的奢侈品变成了现在所有人的日常消费品和生活必需品。
4芯片16nm工艺制程是什么意思指IC内电路与电路之间的距离为16nm。
制程工艺是指在生产CPU过程中,集成电路的精细度,也就是说精度越高,生产工艺越先进。在同样的材料中可以制造更多的电子元件,连接线也越细,精细度就越高,CPU的功耗也就越小。
制程工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。
微电子技术的发展与进步,主要是靠工艺技术的不断改进,使得器件的特征尺寸不断缩小,从而集成度不断提高,功耗降低,器件性能得到提高。 芯片制造工艺在1995年以后,从500纳米、350纳米、250纳米、180纳米、150纳米、130纳米、90纳米、65纳米、45纳米、32纳米、28纳米、22纳米、14纳米、10纳米、7纳米,一直发展到未来的5纳米。
扩展资料 提高处理器的制造工艺具有重大的意义,因为更先进的制造工艺会在CPU内部集成更多的晶体管,使处理器实现更多的功能和更高的性能; 更先进的制造工艺会使处理器的核心面积进一步减小,也就是说在相同面积的晶圆上可以制造出更多的CPU产品,直接降低了CPU的产品成本,从而最终会降低CPU的销售价格使广大消费者得利; 更先进的制造工艺还会减少处理器的功耗,从而减少其发热量,解决处理器性能提升的障碍,处理器自身的发展历史也充分的说明了这一点。 先进的制造工艺使CPU的性能和功能一直增强,而价格则一直下滑,也使得电脑从以前大多数人可望而不可及的奢侈品变成了现在所有人的日常消费品和生活必需品。
参考资料:
2006年5月9日–英特尔公司在京宣布,英特尔-酷睿2双核处理器将成为该公司未来强大的、具有更高能效的处理器的新品牌,两个月后将要发布的台式机和笔记本电脑处理器都将采用这个新品牌。
包括DUO双核和QUAD四核,即将推出八核,但没有单核(有的笔记本配置里看到过)应用的核心“Merom用于移动计算机”“Conroe用于桌面计算机”“Woodcrest用于服务器”英特尔2006年7月份将推出的是65纳米“Merom用于移动计算机T”“Conroe用于桌面计算机E”“Woodcrest用于服务器XEON ITANIUM” 双内核处理。架构体系已经完全摒弃了Pentium M和Pentium 4 NetBurst。
“酷睿”是一款领先节能的新型微架构,早期的酷睿是基于笔记本处理器的。酷睿2:英文Core 2 Duo,是英特尔推出的新一代基于Core微架构的产品体系统称。
于2006年7月27日发布。酷睿2,是一个跨平台的构架体系,包括服务器版、桌面版、移动版三大领域。
其中,服务器版的开发代号为Woodcrest,桌面版的开发代号为Conroe,移动版的开发代号为Merom。 2006年7月27日,Intel全球同步正式发布了代号Conroe和Merom的新一代台式机和笔记本处理器,包括Core 2 Duo和Core 2 Extreme两个品牌,处理器中文名“酷睿2双核”和“酷睿2至尊版”。
Intel原计划在发布Conroe四周之后再发布Merom,但鉴于二者基于同样的核心架构,而且已经归于同一品牌Core 2 Duo之下(最顶级的X6800为Core 2 Extreme),所以分两次发布意义不大,故而将Merom提前与Conroe一同推出。其中桌面和移动平台都叫做Core 2 Duo,可以看出Intel为统一桌面和移动双平台架构的特别用心。
Intel正在逐渐淡化桌面处理器和移动处理器的差别,将Conroe和Merom同命名为Core 2 Duo即可见一斑,因此一同发布也不足为奇。Core 2 Duo在单个芯片上封装了291亿个晶体管,并且在功耗降低40%的同时提供满足当前和未来应用所需的极高性能,功耗的降低得益于它是基于上一代移动平台Core Duo的核心技术开发而来。
但具体强大到什么程度其结果很有可能出乎您的意料之外。暂且可以透露一下,这次测试用的T7200在超频测试中达到264GHz频率时Supei pi 一百万位测试用时20秒,而要达到这个成绩需要采用 NetBurst 架构的 Pentium 4处理器超频到6GHz左右,或者 AMD 的 K8处理器超频到4GHz左右。
足见其性能的强大和核心架构的先进。由于Core的高效架构,Conroe不再提供对HT的支持。
有一点要特别说明:由于Core和 Conroe两个单词在结构上颇为类似,因此有不少消费者往往将Core和Conroe混淆。实际上,我们把Core音译为酷睿,它是Intel下一代处理器产品将统一采用的微架构,而Conroe只是对基于Core微架构的Intel下一代桌面平台级产品的代号。
除Conroe处理器之外,Core微架构还包括代号为Merom的移动平台处理器和代号为Woodcrest的服务器平台处理器。采用Core的处理器将被统一命名。
由于上一代采用Yonah微架构的处理器产品被命名为Core Duo,因此为了便于与前代Intel双核处理器区分,Intel下一代桌面处理器Conroe以及下一代笔记本处理器Merom都将被统一叫做Core 2 Duo。另外,Intel的顶级桌面处理器被命名为Core 2 Extreme,以区别于主流处理器产品。
此次发布的Conroe/Merom共计10款,其中代号以E和X开头的5款面向台式机,以T开头的4款面向笔记本。英特尔初期发布Core微架构处理器包含E6000桌面系列和T7000、T5000移动系列,E6000系列处理器外频为266MHz,前端总线频率为1066MHz,拥有2MB(E6300、E6400)或4MB(E6600、E6700)二级缓存,面向高性能市场;稍后推出的E4000系列外频相对低一些,为200MHz,前端总线800MHz,定位低于E6000系列,发布时间将延后至2007年第一季度。
除普通版Conroe之外,Intel还将发布Conroe XE处理器取代现有的旗舰产品Pentium XE——即X6800。虽然桌面平台的Conroe的前端总线为1066MHz,但这次的主角移动版处理器Merom前端总线均为667MHz(Merom处理器原本是属于下一代移动平台Santa Rosa上的处理器产品,不得不在Santa Rosa平台推出之前先把Merom处理器推向市场,并可以顺利地植入目前的Napa平台上面。
为了在Intel 945芯片组上面运行,其前端总线为了适合于Intel 945芯片组,而仍然保留667MHz的前端总线设计。而今后出现的Santa Rosa平台上的Merom处理器其前端总线就改为800MHz。
这种情景与当年推出400MHz的Dothan为适应Intel 855芯片组的做法十分相似)。二级缓存则加大为4MB(低端的T5000系列仍为2MB),意味着缓存中可以寄存更多等待处理数据,减少处理器与内存以及外围设备间数据传输的瓶颈,提高指令的命中率,大大提高执行效能。
随着Napa平台上Yonah处理器被替换成Merom处理器,这也意味着英特尔移动处理器开始进入64位元双核技术时代,Yonah作为双核移动处理器的首战英雄将开始退居其后。Core架构的Merom处理器确实性能强劲。
在多项测试中,频率2GHz的T7200能战胜频率233GHz的T2700就是最好的证明。但是您同时也注意到了,在移动平台Merom。
6芯片16nm工艺制程是什么意思指IC内电路与电路之间的距离为16nm。
制程工艺是指在生产CPU过程中,集成电路的精细度,也就是说精度越高,生产工艺越先进。在同样的材料中可以制造更多的电子元件,连接线也越细,精细度就越高,CPU的功耗也就越小。
制程工艺的趋势是向密集度愈高的方向发展。密度愈高的IC电路设计,意味着在同样大小面积的IC中,可以拥有密度更高、功能更复杂的电路设计。
微电子技术的发展与进步,主要是靠工艺技术的不断改进,使得器件的特征尺寸不断缩小,从而集成度不断提高,功耗降低,器件性能得到提高。
芯片制造工艺在1995年以后,从500纳米、350纳米、250纳米、180纳米、150纳米、130纳米、90纳米、65纳米、45纳米、32纳米、28纳米、22纳米、14纳米、10纳米、7纳米,一直发展到未来的5纳米。
扩展资料
提高处理器的制造工艺具有重大的意义,因为更先进的制造工艺会在CPU内部集成更多的晶体管,使处理器实现更多的功能和更高的性能;
更先进的制造工艺会使处理器的核心面积进一步减小,也就是说在相同面积的晶圆上可以制造出更多的CPU产品,直接降低了CPU的产品成本,从而最终会降低CPU的销售价格使广大消费者得利;
更先进的制造工艺还会减少处理器的功耗,从而减少其发热量,解决处理器性能提升的障碍,处理器自身的发展历史也充分的说明了这一点。
先进的制造工艺使CPU的性能和功能一直增强,而价格则一直下滑,也使得电脑从以前大多数人可望而不可及的奢侈品变成了现在所有人的日常消费品和生活必需品。
amd cpu 型号大全
AMD Athlon 64 FX-55
AMD Athlon64 FX-55为ClawHammer核心,实际工作频率为2600MHZ,一级缓存为128K,二级缓存为1M,外频为200MHz,采用013微米工艺,额定电压为15V,接口类型为Socket 939并支持双通道DDR 400内存。
AMD Athlon 64 FX-55是2004年10月推出的旗舰级处理器产品,仍采用130纳米制造工艺,于Athlon 64 FX-53相比,频率提高了200MHz,其他参数变化不是很大,它已经改进过了ClawHammer核心,得以支持双通道DDR 400,在以后的日子里,估计AMD将推出的则是90纳米的处理器产品,FX-55可能会成为该系列CPU中最高端的一款。
AMD Athlon 64 FX-53
实际工作频率为240GHz,二级缓存为1MB,核心内部集成了双通道DDR内存控制器,采用013微米制程,采用Socket939接口,前端总线为200MHz。
AMD Athlon 64 FX-51
这款针对桌面台式机的Athlon64 FX51拥有高达64位的寻址能力,支持双通道DDR400,高达1M的二级缓存等等,性能非常出色,不过由于功耗过大,价格过高,所以极少有人问津。 采用s940接口
AMD Opteron 244
AMD Opteron(皓龙) 处理器有三个不同系列可供选择:100 系列 (单路)、200 系列 (单或双路) 及 800 系列 (最高到 8 路)。
二级缓存 1M FSB 800MHz 制程工艺 013 主频 15-20G 接口类型 SOCKET 940
AMD Opteron 240
AMD Opteron 242
AMD Opteron 246
AMD Athlon 64 4000+
Athlon 64 4000+ Socket 939处理器采用013微米制程,工作频率为24GHz,工作电压15v,配备1MB L2缓存。支持32位和64位台式电脑;它还支持Cool'n'Quiet低耗能技术,配有增强病毒防护技术(EVP)功能,可以提供更高一级集成安全性,以发现和阻止某些恶意病毒、计算机蠕虫和特洛伊木马的传播。
二级缓存 1M FSB 400MHz 制程工艺 013 主频 20-30G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET 939
AMD Athlon 64 3500+(Winchester核心)
AMD Athlon 64 3500+(Winchester核心)为Winchester核心,实际工作频率为2200MHZ,一级缓存为128K,二级缓存为512K,外频为200MHz,采用90纳米工艺,额定电压为15V,接口类型为Socket 939并支持双通道DDR 400内存。
二级缓存 512KB FSB 400MHz 制程工艺 009 主频 20-30G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET 939
AMD Athlon 64 3200+(Winchester核心)
AMD Athlon 64 3200+(Winchester核心)为Winchester核心,实际工作频率为2000MHZ,一级缓存为128K,二级缓存为512K,外频为200MHz,采用90纳米工艺,额定电压为15V,接口类型为Socket 939并支持双通道DDR 400内存。
AMD Athlon 64 3000+(Winchester核心)
AMD Athlon 64 3000+(Winchester核心)为Winchester核心,实际工作频率为1800MHZ,一级缓存为128K,二级缓存为512K,外频为200MHz,采用90纳米工艺,额定电压为15V,接口类型为Socket 939并支持双通道DDR 400内存。
AMD Athlon 64 3400+(Clawhammer核心)
AMD Athlon 64 3400+微处理器采用Socket 754针脚,内建128 KB容量一级缓存(64 KB指令 + 64 KB数据)及1 MB容量二级缓存,支持64位单通道DDR400 / 333 / 266 / 200内存,功耗为89瓦,千颗量购单价为417美元。
二级缓存 1M FSB 400MHz 制程工艺 013 主频 20-30G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET 754
AMD Athlon 64 3000+(Newcastle核心)
Athlon 64 3000+微处理器采用Newcastle核心,它的实际频率2GHz,采用013微米制程,共集成1亿500万个晶圆管,内含512 KB容量全速二级缓存,采用Socket 754脚位,可支援64位单通道DDR400 / 333 / 266 / 200内存,工作电压为15 V。
二级缓存 512KB FSB 400MHz 制程工艺 013 主频 20-30G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET 754
AMD AthlonMP 2400+
Athlon MP2400+ 采用SOCKET A接口,FSB 266MHZ,013um工艺制造,主频为1866MHZ,二级缓存为256K。
Athlon MP2400+的Smart MP技术是AMD多处理器平台的主要功能特色,由于可以提高两个中央处理器、芯片组及存储器系统之间的数据传输量,因此能大幅提升整体平台的性能。Smart MP技术采用两个设有错误校正代码(ECC)的点对点266MHz高速系统总线,力求可为双处理器系统的每一中央处理器提供高达21Gbps的总线带宽。Smart MP技术也采用经优化的MOESI高速缓存同调协议,可以为多处理器系统管理数据及存储器的传输操作。 AMD AthlonMP处理器采用已获专利的QuantiSpeed结构,其中包括设有硬件数据预取功能的高性能全速高速缓存、全面设有流水线的超标量(superscalar)浮点运算器、以及一个专用的L2翻译后援缓冲器(TLB)。此外,这款处理器也采用由AMD的3DNow!技术发展出来并添加了51个新指令的专业3DNow! 技术,使系统可以提供更细致逼真的影像、更准确的数字音响以及多采多姿的网上乐趣。 AMD AthlonMP处理器可与性能稳定的AMDSocketA结构兼容,并可支持DDR内存。
二级缓存 256KB FSB 266MHz 制程工艺 013 主频 15-20G 接口类型 SOCKET A
AMD AthlonMP 2600+
AthlonMP 2600+基于TBred核心,266MHz前端总线,256K L2 Cache,工作电压为165V。
AMD AthlonMP 2800+
AMD AthlonXP 3200+(400MHz FSB)
AthlonXP 3200+为Barton 核心,实际工作频率为2200 MHz,一级缓存为128K,二级缓存为512k,倍频为11,外频为166MHz,采用013微米工艺,额定电压为165V,接口类型为SocketA(462针脚)。
二级缓存 512KB FSB 400MHz 制程工艺 013 主频 20-30G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET A
AMD AthlonXP 2500+(Barton核心)
Athlon XP 2500+为Barton 核心,实际工作频率为1830MHZ,一级缓存为128K,二级缓存为512k,倍频为11,外频为166MHz,采用013微米工艺,功率为683W,额定电压为165V,接口类型为SocketA(462针脚)。
AMD AthlonXP 3000+(333MHz FSB)
Athlon XP 3000+实际运行频率是2167GH
AMD AthlonXP 2600+(TB核心,333MHz FSB)
Athlon XP 2600+为TB核心,实际工作频率为1917MHz,一级缓存为128K,二级缓存为512k,倍频为125,外频为166MHz,采用013微米工艺,额定电压为165V,接口类型为SocketA(462针脚)。
二级缓存 512KB FSB 333MHz 制程工艺 013 主频 15-20G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET A
AMD AthlonXP 2800+(Barton核心)
AMD AthlonXP 2700+
Athlon XP 2700+为Thoroughbred-B核心,实际工作频率为216GMHz,一级缓存为128K,二级缓存为512k,倍频为13,外频为166MHz,采用013微米工艺,额定电压为165V,接口类型为SocketA(462针脚)。
二级缓存 512KB FSB 333MHz 制程工艺 013 主频 20-30G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET A
AMD AthlonXP 2400+
二级缓存 512KB FSB 333MHz 制程工艺 013 主频 15-20G 接口类型 SOCKET A
AMD AthlonXP 2200+(TB核心,266MHz FSB)
AMD AthlonXP 1800+
二级缓存 256KB FSB 266MHz 制程工艺 013 主频 15-20G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET A
AMD AthlonXP 1700+
0条评论