河南网通dns是多少
河南网通的DNS首选:202.102.224.68。备用DNS:202.102.227.68。
河南电信的DNS首选:222.85.85.85。备用DNS:222.88.88.88。
DNS主要功能是对易记的域名和不易记的IP地址进行转换。执行上述DNS服务的网络主机称为DNS服务器。
扩展资料:
DNS服务器类型:
主域名服务器
负责维护一个区域的所有域名信息,是特定的所有信息的权威信息源,数据可以修改。
辅助域名服务器
当主域名服务器出现故障、关闭或负载过重时,辅助域名服务器作为主域名服务器的备份提供域名解析服务。辅助域名服务器中的区域文件中的数据是从另外的一台主域名服务器中复制过来的,是不可以修改的。
缓存域名服务器
从某个远程服务器取得每次域名服务器的查询回答,一旦取得一个答案就将它放在高速缓存中,以后查询相同的信息就用高速缓存中的数据回答,缓存域名服务器不是权威的域名服务器,因为它提供的信息都是间接信息。
转发域名服务器
负责所有非本地域名的本地查询。转发域名服务器接到查询请求后,在其缓存中查找,如找不到就将请求依次转发到指定的域名服务器,直到查找到结果为止,否则返回无法映射的结果。
总结下使用ssh远程执行命令需要注意点:
一般我们会使用ssh ip "执行命令"这种格式来执行远程是shell命令,但是如果是简单的一些操作还好,比如cd,rm,ls,mv等命令一般不会出问题
,但是如果你的脚本任务是,杀死多台机器上的hadoop或者elasticsearch进程,你会怎么做?
伦理片 http://wwwdotdycom/
直接使用:
ssh h1 "kill -9 `jps | grep Elastic | gawk '{print $1}' ` " 杀死es进程,你会发现,它竟然没有生效? 明明在本地执行
kill -9 `jps | grep Elastic | gawk '{print $1}' `
这个命令是可以生效的,为啥,放到远程执行命令中就失效了呢?
其实原因很简单,就是因为没有转义造成的,包括awk变量名引用都需要转义,否则,你会发现,虽然能执行,但结果依旧是不准确的,注意linux中
单引号(所有命令均被当成普通字符处理)
双引号(可引用变量名)
反引号(可以执行linux脚本命令)的区别
看最终的正确的写法:
Java代码
ssh $host " es_pid=\`jps | grep Elasticsearch | gawk '{print \$1}'\` && kill \$es_pid "
原因:
默认情况下,Windows Vista 和 Windows Server 2008 操作系统不支持 Internet 协议安全 (IPsec) 网络地址转换 (NAT) 遍历 (NAT-T) 安全关联到 NAT 设备后面的服务器。因此,如果虚拟专用网络 (***) 服务器在NAT 设备的后面时,基于 Windows Vista 的 *** 客户端计算机或基于 Windows Server 2008 的 *** 客户端计算机不能进行第二层隧道协议 (L2TP) / IPsec 连接到 *** 服务器。此方案包括运行 Windows Server 2008 和 Microsoft Windows Server 2003 的 *** 服务器。
当把服务器放在 NAT 设备后面,并使用 IPsec NAT-T 环境时,NAT 设备的转换网络流量的方式,可能会遇到意外的结果。因此,如果必须用 IPsec 通信,建议对所有服务器都使用公用 IP 地址,这样就可以连接至 Internet。但是,如果必须把服务器放在 NAT 设备后面,然后使用 IPsec NAT-T 环境,可以通过更改 *** 客户机和 *** 服务器上的注册表值启用通信。
Windows Registry Editor Version 500
[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\PolicyAgent]
"AssumeUDPEncapsulationContextOnSendRule"=dword:00000002
①开始→控制面板→网络和Internet
②网络和Internet →查看网络状态和任务
③查看网络状态和任务→网络和共享中心→设置新的连接或网络
④择“连接到工作区”,单击“下一步”按钮
⑤在“您想如何连接?”选项中选择“使用我的Internet连接(***)”,单击“下一步”按钮
⑥键入要连接的Internet 地址→按照学校里给的服务器地址填好→下一步
⑦务必勾选:现在不连接,仅进行设置以便稍后连接。
⑧填上有效的用户名和密码→创建→此时连接已经可以使用。
参考资料:
还有一个可能,是对方开票时机器跳出的发票号是0000001,结果她放进去的发票号是0000002,这样的话,即使票面没什么问题,也一样认证不了。
建议:1如果票面没有问题。先跟对方沟通下,看下是不是那边开票的问题。
2自己到国税局机器上验证试试看,过不了就直接找综合服务窗口问下。
GMT/UTC/CST;/etc/localtime,/usr/share/zoneinfo/时区文件,/etc/profile加TZ变量;硬件时间RTC,系统时间;date,hwclock,tzselect;ntp relay server;rpm –ivh ntp-;ntpdate 0ukpoolntporg ;ntpq –p,watch ntpq –p;/etc/ntpconf;/etc/initd/ntpd start;chkconfig --level 35 ntpd on;service ntpd status;设置NTP服务器不难但是NTP本身是一个很复杂的协议
1 时间和时区
如果有人问你说现在几点 你看了看表回答他说晚上8点了 这样回答看上去没有什么问题,但是如果问你的这个人在欧洲的话那么你的回答就会让他很疑惑,因为他那里还太阳当空呢
这里就有产生了一个如何定义时间的问题 因为在地球环绕太阳旋转的24个小时中,世界各地日出日落的时间是不一样的所以我们才有划分时区(timezone) 的必要,也就是把全球划分成24个不同的时区 所以我们可以把时间的定义理解为一个时间的值加上所在地的时区(注意这个所在地可以精确到城市)
地理课上我们都学过格林威治时间(GMT), 它也就是0时区时间 但是我们在计算机中经常看到的是UTC 它是Coordinated Universal Time的简写 虽然可以认为UTC和GMT的值相等(误差相当之小),但是UTC已经被认定为是国际标准,所以我们都应该遵守标准只使用UTC
那么假如现在中国当地的时间是晚上8点的话,我们可以有下面两种表示方式
20:00 CST
12:00 UTC
这里的CST是Chinese Standard Time,也就是我们通常所说的北京时间了 因为中国处在UTC+8时区,依次类推那么也就是12:00 UTC了
为什么要说这些呢
第一,不管通过任何渠道我们想要同步系统的时间,通常提供方只会给出UTC+0的时间值而不会提供时区(因为它不知道你在哪里)所以当我们设置系统时间的时候,设置好时区是首先要做的工作
第二,很多国家都有夏令时(我记得小时候中国也实行过一次),那就是在一年当中的某一天时钟拨快一小时(比如从UTC+8一下变成UTC+9了),那么同理到时候还要再拨慢回来如果我们设置了正确的时区,当需要改变时间的时候系统就会自动替我们调整
现在我们就来看一下如何在Linux下设置时区,也就是time zone
2 如何设置Linux Time Zone
在Linux下glibc提供了事先编译好的许多timezone文件, 他们就放在/usr/share/zoneinfo这个目录下,这里基本涵盖了大部分的国家和城市 # ls -F /usr/share/zoneinfo/
Africa/ Chile/ Factory Iceland Mexico/ posix/ Universal
America/ CST6CDT GB Indian/ Mideast/ posixrules US/
Antarctica/ Cuba GB-Eire Iran MST PRC UTC
Arctic/ EET GMT iso3166tab MST7MDT PST8PDT WET
Asia/ Egypt GMT0 Israel Navajo right/ W-SU
Atlantic/ Eire GMT-0 Jamaica NZ ROC zonetab
Australia/ EST GMT+0 Japan NZ-CHAT ROK Zulu
Brazil/ EST5EDT Greenwich Kwajalein Pacific/ Singapore
Canada/ Etc/ Hongkong Libya Poland Turkey
CET Europe/ HST MET Portugal UCT 在这里面我们就可以找到自己所在城市的time zone文件 那么如果我们想查看对于每个time zone当前的时间我们可以用zdump命令 # zdump Hongkong
Hongkong Fri Jul 6 06:13:57 2007 HKT 那么我们又怎么来告诉系统我们所在time zone是哪个呢 方法有很多,这里举出两种
第一个就是修改/etc/localtime这个文件,这个文件定义了我么所在的local time zone
我们可以在/usr/share/zoneinfo下找到我们的time zone文件然后拷贝去到/etc/localtimezone(或者做个symbolic link)
假设我们现在的time zone是BST(也就是英国的夏令时间,UTC+1) # date
Thu Jul 5 23:33:40 BST 2007我们想把time zone换成上海所在的时区就可以这么做# cp /usr/share/zoneinfo/Asia/Shanghai /etc/localtime
# date
Fri Jul 6 06:35:52 CST 2007这样时区就改过来了(注意时间也做了相应的调整)
第二种方法也就设置TZ环境变量的值 许多程序和命令都会用到这个变量的值 TZ的值可以有多种格式,最简单的设置方法就是使用tzselect命令 # tzselect
You can make this change permanent for yourself by appending the line
TZ='Asia/Hong_Kong'; (permission denied) export TZ
to the file 'profile' in your home directory; then log out and log in again TZ变量的值会override /etc/localtime 也就是说当TZ变量没有定义的时候系统才使用/etc/localtime来确定time zone 所以你想永久修改time zone的话那么可以把TZ变量的设置写入/etc/profile里 3 Real Time Clock(RTC) and System Clock
说道设置时间这里还要明确另外一个概念就是在一台计算机上我们有两个时钟:一个称之为硬件时间时钟(RTC),还有一个称之为系统时钟(System Clock)
硬件时钟是指嵌在主板上的特殊的电路, 它的存在就是平时我们关机之后还可以计算时间的原因
系统时钟就是操作系统的kernel所用来计算时间的时钟 它从1970年1月1日00:00:00 UTC时间到目前为止秒数总和的值 在Linux下系统时间在开机的时候会和硬件时间同步(synchronization),之后也就各自独立运行了
那么既然两个时钟独自运行,那么时间久了必然就会产生误差了,下面我们来看一个例子# date
Fri Jul 6 00:27:13 BST 2007 [root@rhe5 /]# hwclock --help
hwclock - query and set the hardware clock (RTC) Usage: hwclock [function] [options]Functions:
--help show this help
--show read hardware clock and print result
--set set the rtc to the time given with --date
--hctosys set the system time from the hardware clock
--systohc set the hardware clock to the current system time
--adjust adjust the rtc to account for systematic drift since
the clock was last set or adjusted
--getepoch print out the kernel's hardware clock epoch value
--setepoch set the kernel's hardware clock epoch value to the
value given with --epoch
--version print out the version of hwclock to stdoutOptions:
--utc the hardware clock is kept in coordinated universal time
--localtime the hardware clock is kept in local time
--directisa access the ISA bus directly instead of /dev/rtc
--badyear ignore rtc's year because the bios is broken
--date specifies the time to which to set the hardware clock
--epoch=year specifies the year which is the beginning of the
hardware clock's epoch value
--noadjfile do not access /etc/adjtime Requires the use of
either --utc or --localtime# hwclock --show
Fri 06 Jul 2007 12:27:17 AM BST -0968931 seconds通过hwclock --show命令我们可以查看机器上的硬件时间(always in local time zone), 我们可以看到它和系统时间还是有一定的误差的, 那么我们就需要把他们同步
# hwclock –hctosys 把硬件时间设置成系统时间 # hwclock –systohc 把系统时间设置成硬件时间# hwclock --set --date="mm/dd/yy hh:mm:ss" 设置硬件时间我们可以开机的时候在BIOS里设定也可以用hwclock命令# date -s "dd/mm/yyyy hh:mm:ss" 修改系统时间用date命令就最简单了现在我们知道了如何设置系统和硬件的时间 但问题是如果这两个时间都不准确了怎么办 那么我们就需要在互联网上找到一个可以提供我们准确时间的服务器然后通过一种协议来同步我们的系统时间,那么这个协议就是NTP了 接下去我们所要说的同步就都是指系统时间和网络服务器之间的同步了 4 设置NTP Server前的准备
其实这个标题应该改为设置"NTP Relay Server"前的准备更加合适 因为不论我们的计算机配置多好运行时间久了都会产生误差,所以不足以给互联网上的其他服务器做NTP Server 真正能够精确地测算时间的还是原子钟 但由于原子钟十分的昂贵,只有少部分组织拥有, 他们连接到计算机之后就成了一台真正的NTP Server 而我们所要做的就是连接到这些服务器上同步我们系统的时间,然后把我们自己的服务器做成NTP Relay Server再给互联网或者是局域网内的用户提供同步服务 1) 架设一个NTP Relay Server其实非常简单,我们先把需要的RPM包装上 # rpm -ivh ntp-422p1-5el5rpm2)找到在互联网上给我们提供同步服务的NTP Server ,http://wwwpoolntporg是NTP的官方网站,在这上面我们可以找到离我们城市最近的NTP Server NTP建议我们为了保障时间的准确性,最少找两个个NTP Server
那么比如在英国的话就可以选择下面两个服务器
0ukpoolntporg
1ukpoolntporg
它的一般格式都是numbercountrypoolntporg中国的ntp服务器地址:server 133100118 prefer
server 2107214544
server 20311718036
server 131107110
server timeasiaapplecom
server 642369653
server 1301491721
server 669268246
server wwwfreebsdorg
server 18145030
server clockvianet
server 1379214080
server 13310092
server 128118463
server ntpnasagov
server 1297166
server ntp-sopinriafrserver (国家授时中心服务器IP地址)3)在打开NTP服务器之前先和这些服务器做一个同步,使得我们机器的时间尽量接近标准时间 这里我们可以用ntpdate命令 # ntpdate 0ukpoolntporg
6 Jul 01:21:49 ntpdate[4528]: step time server 21322219335 offset -38908575181 sec
# ntpdate 0poolntporg
6 Jul 01:21:56 ntpdate[4530]: adjust time server 21322219335 offset -0000065 sec 假如你的时间差的很离谱的话第一次会看到调整的幅度比较大,所以保险起见可以运行两次 那么为什么在打开NTP服务之前先要手动运行同步呢
1 因为根据NTP的设置,如果你的系统时间比正确时间要快的话那么NTP是不会帮你调整的,所以要么你把时间设置回去,要么先做一个手动同步
2 当你的时间设置和NTP服务器的时间相差很大的时候,NTP会花上较长一段时间进行调整所以手动同步可以减少这段时间5 配置和运行NTP Server
现在我们就来创建NTP的配置文件了, 它就是/etc/ntpconf 我们只需要加入上面的NTP Server和一个driftfile就可以了 # vi /etc/ntpconf
server 0ukpoolntporg
server 1ukpoolntporg
driftfile /var/lib/ntp/ntpdrift非常的简单 接下来我们就启动NTP Server,并且设置其在开机后自动运行# /etc/initd/ntpd start
# chkconfig --level 35 ntpd on6 查看NTP服务的运行状况
现在我们已经启动了NTP的服务,但是我们的系统时间到底和服务器同步了没有呢 为此NTP提供了一个很好的查看工具: ntpq (NTP query)
我建议大家在打开NTP服务器后就可以运行ntpq命令来监测服务器的运行这里我们可以使用watch命令来查看一段时间内服务器各项数值的变化 # watch ntpq -p
Every 20s: ntpq -p Sat Jul 7 00:41:45 2007
remote refid st t when poll reach delay offset jitter
==============================================================================
+1936019975 193622298 2 u 52 64 377 8578 10203 289032
mozartmusicbox 19254141 2 u 54 64 377 19301 -60218 292411 现在我就来解释一下其中的含义
remote: 它指的就是本地机器所连接的远程NTP服务器
refid: 它指的是给远程服务器(eg 1936019975)提供时间同步的服务器
st: 远程服务器的级别 由于NTP是层型结构,有顶端的服务器,多层的Relay Server再到客户端 所以服务器从高到低级别可以设定为1-16 为了减缓负荷和网络堵塞,原则上应该避免直接连接到级别为1的服务器的
t: 这个我也不知道啥意思^_^
when: 我个人把它理解为一个计时器用来告诉我们还有多久本地机器就需要和远程服务器进行一次时间同步
poll: 本地机和远程服务器多少时间进行一次同步(单位为秒) 在一开始运行NTP的时候这个poll值会比较小,那样和服务器同步的频率也就增加了,可以尽快调整到正确的时间范围之后poll值会逐渐增大,同步的频率也就会相应减小
reach: 这是一个八进制值,用来测试能否和服务器连接每成功连接一次它的值就会增加
delay: 从本地机发送同步要求到服务器的round trip time
offset: 这是个最关键的值, 它告诉了我们本地机和服务器之间的时间差别 offset越接近于0,我们就和服务器的时间越接近
jitter: 这是一个用来做统计的值 它统计了在特定个连续的连接数里offset的分布情况 简单地说这个数值的绝对值越小我们和服务器的时间就越精确
那么大家细心的话就会发现两个问题: 第一我们连接的是0ukpoolntporg为什么和remote server不一样 第二那个最前面的+和都是什么意思呢
第一个问题不难理解,因为NTP提供给我们的是一个cluster server所以每次连接的得到的服务器都有可能是不一样同样这也告诉我们了在指定NTP Server的时候应该使用hostname而不是IP
第二个问题和第一个相关,既然有这么多的服务器就是为了在发生问题的时候其他的服务器还可以正常地给我们提供服务那么如何知道这些服务器的状态呢 这就是第一个记号会告诉我们的信息
它告诉我们远端的服务器已经被确认为我们的主NTP Server,我们系统的时间将由这台机器所提供
+
它将作为辅助的NTP Server和带有号的服务器一起为我们提供同步服务 当号服务器不可用时它就可以接管
-
远程服务器被clustering algorithm认为是不合格的NTP Server
x
远程服务器不可用
了解这些之后我们就可以实时监测我们系统的时间同步状况了7 NTP安全设置
运行一个NTP Server不需要占用很多的系统资源,所以也不用专门配置独立的服务器,就可以给许多client提供时间同步服务, 但是一些基本的安全设置还是很有必要的
那么这里一个很简单的思路就是第一我们只允许局域网内一部分的用户连接到我们的服务器 第二个就是这些client不能修改我们服务器上的时间
在/etc/ntpconf文件中我们可以用restrict关键字来配置上面的要求
首先我们对于默认的client拒绝所有的操作 restrict default kod nomodify notrap nopeer noquery
然后允许本机地址一切的操作restrict 127001
最后我们允许局域网内所有client连接到这台服务器同步时间但是拒绝让他们修改服务器上的时间restrict 19216810 mask 2552552550 nomodify
把这三条加入到/etc/ntpconf中就完成了我们的简单配置 NTP还可以用key来做authenticaiton,这里就不详细介绍了8 NTP client的设置
做到这里我们已经有了一台自己的Relay Server如果我们想让局域网内的其他client都进行时间同步的话那么我们就都应该照样再搭建一台Relay Server,然后把所有的client都指向这两台服务器(注意不要把所有的client都指向Internet上的服务器) 只要在client的ntpconf加上这你自己的服务器就可以了 代码:
server ntp1leonardcom
server ntp2leonardcom
9 一些补充和拾遗
1 配置文件中的driftfile是什么
我们每一个system clock的频率都有小小的误差,这个就是为什么机器运行一段时间后会不精确 NTP会自动来监测我们时钟的误差值并予以调整但问题是这是一个冗长的过程,所以它会把记录下来的误差先写入driftfile这样即使你重新开机以后之前的计算结果也就不会丢失了
2 如何同步硬件时钟
NTP一般只会同步system clock 但是如果我们也要同步RTC的话那么只需要把下面的选项打开就可以了 可以通过ps –ef |grep ntp或者使用pgrep –lf ntp查看一下你的ntp服务是否启动了。然后可以通过snoop命令进行ntp的检测。
Snoop |grep –i ntp进行检测。
在建立好ntp服务以后,可以用2个工具命令对ntp服务进行管理。
一个是ntpq是一个交互式应用命令,在它的下面有很多的子命令可以供大家使用使用peers可以查看同步进程。如果还需要其他的命令可以输入help 进行查看。还有一个工具命令是ntpdate这个命令一般用于ntp的客户端使用。可以在/var/adm/messages中看到ntp的同步信息的情况。如果需要更加详细的ntpq和ntpdate的信息可以使用man帮助进行查询。
总的来说,无盘工作站都是由网卡的启动芯片(Boot ROM)以不同的形式向服务器发出启动请求号,服务器收到后,根据不同的机制,向工作站发送启动数据,工作站下载完启动数据后,系统控制权由Boot ROM转到内存中的某些特定区域,并引导操作系统。根据不同的启动机制,目录比较常用无盘工作站可分为RPL和PXE,而目前的Windows 2000终端从其原理来说,并不属于无盘工作站,它也可以用终端卡或硬盘引导系统,进入工作站操作系统后,再连接Windows2000 服务器,而这个连接程序与一般的应用软件并没有什么本质区别,我们把它归结到无盘网络的原因是:目前大多数的终端都是先通过RPL或PXE启动无盘到DOS或Windows3x,再从无盘站中连接,成为终端。
411 RPL启动工作原理
RPL为Remote Initial Program Load的缩写,启动过程分析如下:
客户机开机后,初始化网卡,网卡BootROM上固化的软件向网络广播一个FIND帧,即引导请求帧,该帧中包含有客户机的网卡ID号。
服务器端的远程启动服务接收到客户机广播的FIND 帧后,根据帧中所带的网卡ID号在远程启动数据库中查找相应的工作站记录,如果不存在这样一个记录,引导过程不能继续;如果此工作站记录已经存在,远程启动服务则发送一个FOUND 帧给客户机的RPLROM,FOUND帧中已包含了服务器的网卡ID。
当网络上有数台服务器在运行远程启动服务时,RPLROM有可能会接收到多个FOUND帧,但RPLROM只对它收到的第一个FOUND帧有反应,它将根据第一个FOUND帧中所带的服务器网卡ID号,返回一个SENDFILEREQUEST帧给对应的服务器。SENDFILEREQUEST帧是一个要求服务器发送文件的请求。
服务器端的远程启动服务在收到SENDFILEREQUEST帧后,将根据远程启动数据库中的工作站记录查找对应的启动块(BootBlock)——在实际配置时我们知道,它位于NETBEUI目录,名为DOSBBCNF和W95BBCNF——用FILEDATRESPONSE帧将启动块送回客户机端的RPLROM。
RPLROM在收齐所有的FILEDATRESPONSE帧后,将执行点转向启动块的入口,启动工作站。工作站以Windows 95实模式启动后,将创建一个RAM盘,并将Windows 95实模式文件从远程启动服务器拷贝到RAM盘,加载Windows 95实模式网络设备启动并建立一个到SBS服务器的连接。最后,连接到该客户机的计算机目录(Machine Directory)所在的服务器上,并根据计算机目录中的有关设置及数据完成Windows 95启动过程。
412 PXE启动原理
PXE是RPL的升级品,它是Preboot Execution Environment的缩写。它们的不同之处在于RPL是静态路由,而PXE是动态路由。其通信协议采用TCP/IP,与Internet连接高效而可靠,PXE无盘工作站的启动过程分析如下:
¨ 客户端个人电脑开机后, 在 TCP/IP Bootrom 获得控制权之前先做自我测试。
¨ Bootprom 送出 BOOTP/DHCP 要求以取得 IP。
¨ 如果服务器收到个人电脑所送出的要求, 就会送回 BOOTP/DHCP 回应,内容包括
客户端的 IP 地址, 预设网关, 及开机影像文件。否则, 服务器会忽略这个要求。
¨ Bootprom 由 TFTP 通讯协议从服务器下载开机影像文件。
¨ 个人电脑通过这个开机影像文件开机, 这个开机文件可以只是单纯的开机程式也可
以是操作系统。
¨ 开机影像文件将包含 kernel loader 及压缩过的 kernel, 此 kernel 将支持NTFS root
系统。
¨ 远程客户端根据下载的文件启动机器。
413 Windows 2000终端(WBT)的特点及纯软件终端启动原理
WBT(Windows Based Termintal)是Windows2000 Server/Advanced Server推出的一项标准服务,它允许用户以Windows界面的客户端访问服务器,运行服务器中的应用程序,使用户就像用自己的计算机一样。在WBT的网络中,所有应用软件的安装、配置、运行和存储等均在服务器上进行,客户机(终端)只作为输入输出设备。当终端用户登录到服务器后,就可以像使用本地资源一样使用服务器上的资源,运行服务器上Windows应用程序。多个终端用户可以同时登录到服务器上,互不影响地工作。这样的网络十分容易进行集中管理,很适合学校和中小企业的局域网构建。WBT的这一特点跟早期的UNIX的字符终端类似,但WBT的优势在于它是基于Windows的,具有友好的图形界面和Windows的易用性。另外,在WBT的网络环境下,网络传输的数据主要是键盘和鼠标的输入信息与显示器的输出信息,数据的处理都在服务器上进行,这就大大减少了网络的传输量。
此方案中将原本要淘汰的386、486计算机作为终端使用,有利于资源的再利用;同时,安装软件及运算等都在服务器上进行,一般情况只需维护一台服务器就行,对于软件及防病毒的管理也降低了,所以利用该方案大大降低了总体拥有成本,节省了大量的资金。它有以下一些特点:
¨ 运算、存储都在服务器内进行,安装软件只需安装在服务器上一份,所有终端就都可以使用;所有终端用户的文件都各自独立地存放在服务器上,即使掉电,也不会造成资料丢失;
¨ 机房维护由维护每一台PC,转变为维护一台服务器,维护成本大大降低;总拥有成本(TCO)大大降低;
¨ Windows2000 服务器版本是最新的服务器操作系统,性能非常稳定,整个系统的稳定性得到可靠保障;
¨ Windows2000 终端的界面是标准的 Windows风格界面,使用最新的Windows2000 的界面,用户非常熟悉,无需特殊培训;
¨ 能满足对因特网的需求;应用当今流行软件时单机反映速度快;使用 Windows终端与使用PC完全相同,所以在 Windows终端上的学习经验,可以应用到PC上;
¨ 管理和控制性强:终端服务器能够对终端进行管理,设定终端机运行的软件,同时能对终端机进行随时监控。
纯软件终端的启动原理:它的启动原理前一部分与RPL或PXE无盘启动原理完全相同,这里就不再详述了,后一部分的连接是基于Windows 2000多用户、多任务的基础上的终端服务,在工作站上安装由微软提供的32位的连接程序,或由第三方的提供的16位或32位在DOS、Windows 3x或Windows 9x无盘站安装连接程序,并设置好连接属性,然后在启动无盘站时将其连接命令加到DOS站的开机批处理,或加到无盘Windows 的启动组,使其自动连接Windows 2000服务器。在终端安装Windows CE,服务器端安装Windows 2000专业版,终端启动以后透过RDP协议运行服务器端的应用程序,服务器端进行应用程序运算后同样透过RDP协议将结果在终端显示。
42 无盘网络的历史及发展
最早使用的无盘网络,应该是UNIX的字符终端,本书所指无盘网络是广义上的定义,也是就是说只客户机上无软硬盘,我们就称为无盘网络。
从1994年至1996年,绝大多数无盘网络基本构架都是采用Novell Netware 311或Novell Netware 312作服务器的操作平台,工作站以IPX方式登录。当时我们称它为IPX无盘网络,主要是用于教学网络,应用程序主要以DOS为主。
从1996年至1999年,以RPL方式登录的无盘网络占绝大多数,服务器端可以选择Novell Netware 41或Windows NT 40 Server,在此期间,由于微软的大力支持,在它的Windows 95产品系列中,推出了网络版的Windows 95即所谓的完全版,它包含了网络安装命令Netsetup,之后的几年RPL几乎成为了无盘网络的代名词,1998年微软推出的Windows 98,没过多久,又推出了Windows 98第二版,其内核较Windows95有较大变化,与Internet联系更加紧密,功能也有所增强,遗憾的是Windows98不再提供Netsetup命令,也就是说Windows98无法安装在无盘站上,尽管众多的爱好者不断的努力,无盘仍然不能98,期间,也有人声称成功安装无盘Windows 98,其实,只是改头换面的Windows 95,其内核仍然是Windows 95,我们把它称之为伪Windows 98。
自2000年至今的一年多来,由于Inter、3COM和QUALSTEM等大公司的界入,使无盘技术得到了飞速的发展,大量高质量的无盘支持软件不断出现,例如Inter PXE PDK、3COM DABS、3COM虚拟硬盘和QUALSTEM的Litenet。与之相对应的无盘方案也层出不穷,令人目不暇接,无盘站不能运行Windows 98已成为过去,新的无盘启动机制反过来被用到了RPL中,使得RPL工作站上也可以运行Windows 98了。与此同时,微软公司在其划时代的产品Windows2000中将终端技术收为标准组件,加上第三方软件Mateframe对终端的支持,使其可以在无盘DOS或无盘Windows3x下连接Windows2000 Server而形成所谓的纯软件Windows 2000 终端。目前在无盘技术方面有三个主流即:RPL无盘Windows98、PXE 无盘Windows 98系统和纯软件的Windows 2000 终端。可以看出在无盘组网方面用户有了更多的选择,而且无盘技术的应用领域更广,几乎所有有盘站能运行的软件在无盘站都能运行。
43 三种主流无盘网络的对比
面对各种无盘解决方案读者可能无可适从,本节将对PXE、 RPL、Windows 2000 自带的终端(下面称为标准WBT) 与基于MetaFrame的终端(下面称为Meta WBT)之间的区别作一详细的介绍。我们把标准WBT和Meta WBT合称为终端。
标准WBT名气最大,是软件巨人微软推出,捆绑在Windows 2000里面。它也是微软针对嵌入式产品推出的重量级产品,微软希望籍此在嵌入式产品市场中抢得垄断地位。
标准WBT的优点是对终端的硬件要求不高,只须运行Windows CE以及处理一些简单I/O动作。不须对现有终端作更多改造升级或再投资,通常586机器即可满足要求,无须硬盘,在网卡的bootrom中增加Windows CE或PCI槽中插一片带Windows CE的DOS即可,终端的其它方面无须改动,保护现有投资。缺点:对服务器硬件要求高,因为所有的终端运行的应用程序都在服务器上运行,CPU及内存资源消耗相当大。同时,由于Windows CE本身受限的缺陷,即“客户机过瘦”,对各种外设的支持不足,相应的驱动程序较难找到,多媒体方面的性能较弱。大型软件的运行速度较慢。由于微软的惯例,客户端只限于Windows CE设备,服务器须是Windows 2000服务器,从而大大限制了它的应用场合。
MetaFrame国内较少见,大家较为陌生,是美国Citrix公司开发,支持16位,32位Windows PC,Windows终端,网络电脑,Windows CE设备,及范围很广的非Windows终端,web 浏览器等。服务器端是MetaFrame Server,其实质是用Windows 2000 Server上装有MetaFrame服务端程序。服务器可以采用多个服务器群集的方式,但须指定一个主服务器(Master metal frame Server)由于客户端程序可以跨平台工作,所以在未来ASP中竞争更强。工作方式也与标准WBT极为相似,客户端须自举启动(不一定选择Windows CE,可以用其它OS,包括DOS、UNIX等),然后可以透过ICA协议在服务器执行应用程序,服务器端也通过ICA传输用户界面,包括运行结果。服务器可以置在远端,然后终端通过ISDN,MODEN拨号,局域网,甚至无线传输等方式,以ICA协议与远端的服务器通信。这与标准WBT相比有着很大的优势,意味着ASP供应商可以透过Intenet提供应用服务。MetaFrame还有一个工具很诱人,管理员可以远程操控客户端界面,控制客户端的键盘,鼠标以及输出界面。MetaFrame 的缺点与标准WBT一样,对服务器硬件资源要求较高。 实质上,MetaFrame与 WBT的核心技术是将用户界面程序与逻辑运行程序剥离,逻辑运行程序在服务器端运行,用户界面程序通过ICA或RDP协议传输到客户端,同时ICA或RDP将用户交互响应的信息(如键盘,鼠标操作等)送回至逻辑运行程序处理。但客户端系统的自举还须靠本地原有的OS如Windows CE等完成,故严格而言,并不算是远程启动技术。
PXE是真正意义上的远程启动技术。PXE是Intel公司开发,虽然推出时间不短,但真正有价值的应用却是今年内才体现。据网站记载,国内DTK公司,长城电脑都已成功在Intel PXE技术上研发Windows 98无盘工作站,并在教育系统中大力推广。 工作站具有一个带有Intel PXE bootrom的网卡或集成到BIOS的英特尔PXE代码。当一个终端启动后,服务器的操作系统(OS)将被加载至其内存中。在远程启动软件外接附件的帮助下,服务器操作系统远程启动服务可以支持学生站运行Windows 95和Windows 98。当终端启动时,PXE代码将从服务器检索启动和配置软件,这一过程就是远程启动。
与终端技术不同的是,PXE运行应用程序用到的是本地的资源,及内存,只是相当于硬盘由网络代替了,服务器的负荷也大为减少,配置要求相对较低,这是比WBT先进的一大优点。由于工作站上运行的是真正的Windows 98,所以支持的应用软件十分丰富。工作站加上硬盘后就变成一个标准的PC机,可以在其它场合应用,从而保护了客户的投资。可惜的是,PXE现在还不支持拨号,ISDN等方式,因而不能透过Internet实现远程启动,因此作为ASP工具不太合适。但如果应用于电子教室,办公室,酒店,网吧,证券等场合则相当具有竞争力。在速度方面,与终端不相上下,但在多媒体方面,PXE占优势。
综上所述,三者各具优势,用户可根据自身的需求选择适当的技术和产品。一般而言,若ASP,远程教育选择Metal frame最为合适,局域网场合选用PXE较为合适,而PDA,手持设备等则选Windows CE为佳。
PXE与RPL在运行应用程序所使用的资源除硬盘外,都是本地的资源,从其运行模式来看两者有很多相似之处,但内核是截然不同的,以下从几个方面进行比较:
¨ 发展前景
PXE:Intel新推出的软件,从理论上来讲应该是很先进的,尽管还存在一些问题,但其优越的一面已经在应用中得到了充分的体现,而且Intel公司还将继续提供这方面的支持,并且公开源码,相信以后会更加改进。
RPL:Microsoft产品,已经很成熟了,而且许多爱好者都比较熟,技术资料到处都是,但Microsoft已经放弃了此产品开发与支持,不会再有更新的升级产品了。
¨ 工作站启动速度
从少量机器来看,PXE与RPL似乎没有太多的区别,但如果机器数量较多,PXE会快一些,其原因主要是RPL采用NETBEUI通信协议,若传送过程中有错误帧,RPL会要求整个数据包重发,而PXE采用基于TCP/IP的MTFTP(多点传送)的通信协议,若在传送过程中有错误帧,PXE并不是将整个数据包重发,只是将某一出错线程的数据重发,这样使整个网络的启动的速度加快。在工作站较多的情况下,出错的概率较高,因此在这种情况下启动速度的差别较大。
¨ 安装方面
PXE安装是基于本地上传的,也就是说,只要在一个工作站上安装好一台有盘工作站,然后通过上传软件,将整个硬盘上传服务器的一个共享目录下,安装步骤比较少,整个过程也很简单,安装成功率很高。传统方式下的RPL Windows 95无盘站的安装过程十分繁琐,且很容易出错,安装成功率很低。目前的RPL技术吸取了PXE的本地上传方式,使安装的方法接近PXE的安装,但需掌握RPL和PXE两项技术才能进行安装。当然目前出现的许多RPL98的安装工具,给安装无盘RPL Windows 98带来方便。
¨ 运行速度
PXE要快一些,特别是在运行一些大的应用软件或上网时更加明显,主要原因是由于PXE的默认协议为TCP/IP。而在低配置无盘网络中,RPL无盘Windows 95要快一些。
¨ 日后维护方面
PXE和改良的RPL在日后的维护方面十分方便,软件的维护量极低,所需的维护只是升级应用软件,删除客户机无用文件。若一段时间不用应用程序,且硬盘作好磁盘配额,那么在这段时间内可以作到软件零维护,对机房管理人员来说可以说是一个解放。传统的RPL网络的维护量极大,客户机可以轻意的破坏系统,虽然可以通过各种手段加以限制,但无法从根本上解决,而且由于各种限制的存在使Windows 界面面目全非。
¨ 硬件兼容性
PXE软件可以大多数的网卡和主板,但PXE的启动芯片支持的网卡并不多,对主板的BIOS要求为AWORD的,其它的BIOS版本则有不兼容的现象,这是目前制约PXE发展的重要因素。RPL的硬件兼容性则很好几乎所有的网卡和主板都能支持。
三种主流无盘网络系统(四种方案)对比如表41所示。
表41 四种无盘启动技术的比较表
PXE
RPL
标准WBT
Mate WBT
服务器操
作平台
Windows NT 40 Server
Windows2000 Server
Windows2000 Advance Server
Novell Netware 3xx
Windows NT 40 Server
Windows2000 Server
Windows2000 Advance Server
Windows2000 Server
Windows2000 advance Server
显示服务协议
由本机设备处理
由本机设备处理
RDP协议,仅支持在TCP/IP环境下运行的wan,lan或远程访问网络。仅适用宽带企业网
ICA网络协议,适用于宽带网及窄带网,并支持屏蔽技术,管理员可远程操纵瘦客户端设备
客户端支持
无盘DOS工作站
无盘Windows 95工作站
无盘Windows 98工作站
无盘DOS工作站
无盘Windows95工作站
无盘Windows98工作站
Windowsce设备,包括Windows终端
超过200个客户终端,支持16位,32位Windows终端,网络电脑,Windows ce设备,及范围很广的非windows终端,web 浏览器
服务器的要求
较低
最低
高
高
工作站的要求
最高
较高
较低
低
应用场合
新建机房,无盘网吧
教学网络,游戏网等
配置较差的无盘网络
教学网络、游戏网
Windows9x 网络,企业内部网资源共享 手持设备
配置很差的386、486机房改造,主要用于教学网
0条评论