诺贝尔物理学奖:1901年至今

诺贝尔物理学奖:1901年至今,第1张

引力波的图解。根据阿尔弗雷德·诺贝尔的遗嘱,诺贝尔物理学奖将颁给“在物理学领域做出最重要发现或发明的人”。除1916年、1931年、1934年、1940年外,该奖每年颁发一次,1941年和1942年,瑞典皇家科学院称:

这里是获奖者的完整名单:

2019年:普林斯顿大学的加拿大人詹姆斯皮布尔斯因“物理宇宙学的理论发现”获得诺贝尔奖的一半。该研究院称,另一半奖金是由米歇尔·马约尔和迪迪埃·奎洛兹共同获得的,“因为他们发现了一颗围绕太阳型恒星运行的系外行星”。市长是瑞士日内瓦大学的教授,Queloz同时在日内瓦大学和英国剑桥大学,在和地球共同获得了宇宙的进化和中国在宇宙中的地位,该学院说:

2018:阿瑟·阿什金获得一半的奖项,另一半则联合颁发给唐娜·斯特里克兰和杰拉德·穆鲁,表彰他们在激光物理学领域的开创性发明。这是55年来首次有女性获得诺贝尔物理学奖。[了解更多有关2018年诺贝尔奖和诺贝尔奖获得者的信息]

2017:900万瑞典克朗(110万美元)的奖金中有一半归麻省理工学院的雷纳•韦斯(Rainer Weiss)所有。另一半由加州理工学院的巴里·巴里什和基普·索恩共同分享,根据Nobelprizeorg网站的报道,该奖项表彰了三人对LIGO探测器和引力波观测的决定性贡献。这三位科学家在第一次探测称为引力波的时空涟漪时是不可或缺的。本案中的波来自13亿年前两个黑洞的碰撞。

2016:一半授予西雅图华盛顿大学的大卫J索利斯,另一半授予普林斯顿大学的F邓肯M霍尔丹和普罗维登斯布朗大学的J迈克尔科斯特里茨。他们的理论发现打开了通往一个物质可以呈现奇怪状态的奇怪世界的大门。根据诺贝尔基金会的说法:“多亏了他们的开创性工作,人们现在正在寻找物质的新的和奇异的阶段。许多人对材料科学和电子学的未来应用充满希望。

2015:Takaki Kajita和Arthur BMcDonald展示了中微子的变形,揭示了亚原子粒子具有质量,开辟了粒子物理学的新领域。

2014:Isamu Akasaki,Hiroshi Amano和Shuji Nakamura发明了一种节能光源:蓝光发光二极管(LED),“KdSPE”“KDSPS”2013:英国的彼得·希格斯和比利时弗兰弗兰的两个科学家,他们预测了近50年前希格斯玻色子的存在。[相关报道:希格斯玻色子物理学家获得诺贝尔奖]

2012:法国物理学家谢尔盖·哈罗奇和美国物理学家大卫·怀兰,他们在量子光学领域的开创性研究。

2011:一半授予索尔·珀尔穆特,另一半联合授予布莱恩·施密特和亚当·G·里斯,他们发现了加速通过观测遥远的超新星扩展宇宙。

2010:Andre Geim和Konstantin Novoselov,“关于二维材料石墨烯的开创性实验。”

2009:Charles KKao,“为了在光纤中传输光以用于光通信的突破性成就”,Willard SBoyle和George ESmith,“为了发明成像半导体电路——CCD传感器。”

2008:Yoichiro Nambu,“为了发现亚原子物理学中自发破缺对称的机制,”Makoto Kobayashi,Toshihide Maskawa说,“为了发现至少存在的对称性破缺的起源。

2007:Albert Fert和Peter Grünberg,“发现巨磁电阻”

2006:John CMather和George FSmoot,“发现宇宙微波背景辐射的黑体形式和各向异性。”

2005:Roy JGlauber,“感谢他对光学相干量子理论的贡献”,以及John LHall和Theodor WHänsch,“感谢他们对激光精密光谱学发展的贡献,包括光学频率梳技术。”

2004:David JGross、HDavid Politzer和Frank Wilczek,“在强相互作用理论中发现渐近自由。”

2003:Alexei AAbrikosov,Vitaly LGinzburg和Anthony JLeggett,“对超导体和超流体理论的开创性贡献。”

2002:Raymond Davis Jr和Masatoshi Koshiba,“对于天体物理学的开拓性贡献,特别是对于宇宙中微子的探测,”和Riccardo Giacconi,“对于天体物理学的开拓性贡献,这导致了宇宙X射线源的发现。”

2001:Eric ACornell、Wolfgang Ketterle和Carl EWieman,“为了在稀碱原子气体中实现玻色-爱因斯坦凝聚,并为凝聚物性质的早期基础研究。”

2000:Zhores IAlferov和Herbert Kroemer,“用于发展用于高速和光电的半导体异质结,“和Jack SKilby”为他在集成电路发明中的一部分。

1999:Gerardus't Hooft和Martinus JGVeltman,“用于阐明物理学中电弱相互作用的量子结构。”

1998:Robert BLaughlin、Horst LStórmer和Daniel CTsui,“因为他们发现了一种具有分数电荷激发的新型量子流体。”

1997:Steven Chu,Claude Cohen Tannoudji和William DPhillips,“用激光冷却和捕获原子的方法的发展。”

1996:David MLee,Douglas DOsheroff和Robert CRichardson,“在氦-3中发现超流体。”

1995:Martin LPerl,“tau轻子的发现”和Frederick Reines,“中微子的探测。”

1994:Bertram NBrockhouse,“中子光谱的发展”和Clifford GShull,“为了中子衍射技术的发展。”

1993:Russell AHulse和Joseph HTaylor Jr“为了发现一种新型脉冲星,这一发现为研究引力开辟了新的可能性。”

1992:Georges Charpak,“为了他发明和发展粒子探测器,特别是多线比例室。

1991:Pierre Gilles de Gennes,“发现研究简单体系中有序现象的方法可以推广到更复杂的物质形式,特别是液晶和聚合物。”

1990:Jerome IFriedman,Henry WKendall和Richard ETaylor,“关于电子对质子和束缚中子的深度非弹性散射的开创性研究,对于粒子物理学中夸克模型的发展具有重要意义。”

1989:Norman FRamsey,“分离振荡场方法的发明及其在氢脉泽和其他原子钟中的应用”,Hans GDehmelt和Wolfgang Paul,“离子阱技术的发展。”

1988:Leon MLederman、Melvin Schwartz和Jack Steinberger,“用于中微子束方法和通过发现μ子中微子来演示轻子的双重结构。”

1987:JGeorg Bednorz和KAlexander Müller,“用于发现陶瓷材料中的超导性的重要突破。”

1986:Ernst Ruska从事电子光学工作,对于第一台电子显微镜的设计,以及Gerd Binnig和Heinrich Rohrer,对于扫描隧道显微镜的设计。

1985:Klaus von Klitzing,“对于量子化霍尔效应的发现”,

1984:Carlo Rubbia和Simon van der Meer,“因为他们对导致发现W和Z场粒子的大型项目的决定性贡献,弱相互作用的传播者。”

1983:Subramanyan Chandrasekhar,“因为他对恒星结构和演化的重要物理过程的理论研究,”和威廉·阿尔弗雷德·福勒“因为他对弱相互作用的物理过程的理论研究。”宇宙化学元素形成中重要核反应的理论和实验研究。

1982:Kenh GWilson,“关于相变临界现象的理论。”

1981:Nicolaas Bloembergen和Arthur Leonard Schawlow,“关于它们对激光光谱学的发展,以及Kai MSiegbahn对高分辨率电子光谱学发展的贡献,“发现中性K介子衰变中违反基本对称性原理的现象。”

1979:Sheldon Lee Glashow,Abdus Salam和Steven Weinberg,“他们对基本粒子间统一弱相互作用和电磁相互作用理论的贡献,包括,除其他外,弱中性电流的预测。

1978:Pyotr Leonidovich Kapitsa,“在低温物理领域的基本发明和发现”,以及Arno Allan Penzias,Robert Woodrow Wilson“发现宇宙微波背景辐射”。

1977:Philip Warren Anderson,内维尔·弗朗西斯·莫特爵士和约翰·哈斯布鲁克·范·韦立克,“对磁性和无序系统电子结构的基本理论研究”,

,1976年:伯顿·里克特和塞缪尔·赵正廷,“为了他们在发现一种新的重元素粒子方面的开创性工作。”

1975:Aage Niels Bohr,Ben Roy Mottelson和Leo James雨水,“为了发现原子核中集体运动和粒子运动之间的联系和发展基于原子核的结构理论。”关于这一联系。

1974:Martin Ryle爵士和Antony Hewish,“他们在射电天体物理学方面的开创性研究:Ryle的观察和发明,特别是孔径合成技术,以及Hewish在脉冲星发现中的决定性作用。”

1973:Leo Esaki和Ivar Giaever,他们的关于半导体和超导体中隧穿现象的实验发现,分别是“和Brian David Josephson”,因为他对通过隧穿势垒的超电流特性的理论预测,特别是那些通常被称为Josephson效应的现象。”

1972:John Bardeen,列昂·尼尔·库珀,约翰·罗伯特·施里弗,“为他们共同发展的超导理论,通常称为BCS理论。”

1971:丹尼斯·加博,“为他发明和发展的全息方法。”

1970:汉内斯·奥洛夫·戈斯塔·阿尔芬,“为了在磁流体动力学方面的基础工作和发现,以及在等离子体物理学不同领域的富有成效的应用,”和路易斯·尤恩·费利克斯·奈尔,“对于反铁磁和铁磁的基础工作和发现,它们在固体物理学中有着重要的应用。”

1969:Murray Gell Mann,“关于基本粒子分类及其相互作用的贡献和发现。”

1968:Luis Walter Alvarez,“因为他对基本粒子物理学的决定性贡献,特别是发现了大量的共振态,使得他在技术上的发展成为可能使用氢气泡室和数据分析的ique。

1967:Hans Albrecht Bethe,“因为他对核反应理论的贡献,特别是他对恒星能量产生的发现。”

1966:Alfred Kastler,“为了发现和发展研究原子中赫兹共振的光学方法。”

1965:Sin Itiro Tomonaga,Julian Schwinger和Richard PFeynman,“为了他们在量子电动力学中的基础工作,

1964:Charles Hard Townes,“量子电子学领域的基础工作,它导致了基于脉泽激光原理的振荡器和放大器的构造”,以及Nicolay Gennadiyevich Basov和Aleksandr Mikhailovich Prokhorov,“对于量子电子学领域的基础工作,这导致了基于脉泽激光原理的振荡器和放大器的构建。”

1963:Eugene Paul Wigner,“对于原子核和基本粒子理论的贡献,特别是通过基本对称原理的发现和应用,以及Maria Goepert Mayer和JHans DJensen,他们发现了核壳结构。

1962:Lev Davidvich Landau,“他开创了凝聚态的理论,尤其是液氦。

1961:Robert Hofstadter,“因为他对原子核中电子散射的开创性研究,并由此获得了有关核子结构的发现,”Rudolf Ludwig Mós auer,“因为他对伽马辐射共振吸收的研究以及在这方面的发现”以他的名字命名的效应的联系。

1960:Donald Arthur Glaser,“为泡沫室的发明。”

1959:Emilio Gino Segrè和欧文张伯伦,“为他们发现反质子。”

1958:Pavel Alekseyevich Cherenkov,Il'ja Mikhailovich Frank和Igor Yevgenyevich Tamm,“为了发现和解释切伦科夫效应。”

1957:陈宁阳和宗道(TD)李,“因为他们对所谓的宇称定律的深入研究导致了关于基本粒子的重要发现。”

1956:威廉·布拉德福德·肖克利,约翰·巴丁和沃尔特·豪斯Brattain,“研究半导体和发现晶体管效应”,

1955:Willis Eugene Lamb,“发现氢光谱的精细结构”,Polykarp Kusch,“精确测定电子的磁矩”,

1954:Max Born,“为他在量子力学方面的基础研究,特别是为他对波函数的统计解释,”和沃尔特·博特,“为符合方法及其发现。”

1953:Frits(Frederik)Zernike,“为他对相位对比方法的演示,尤其是相位对比显微镜的发明。

1952:Felix Bloch和Edward Mills Purcell,“他们开发了核磁精密测量和相关发现的新方法。”

1951:John Douglas Cockcroft爵士和Ernest Thomas Sinton Walton,“他们的开创性工作关于原子核由人工加速原子粒子的嬗变。“KdSPE”“KdSPs”1950:Cecil Frank Powell,“他研究核过程的照相方法的发展及其对用该方法制作的介子的发现。”“KdSPE”“KDSPs”1949:Yuki-YukaWa,“用于预测介子的存在。核力理论工作的基础。

1948:Patrick Maynard Stuart Blackett,“关于威尔逊云室方法的发展,以及在核物理和宇宙辐射领域的发现。”

1947:Edward爵士维克多·阿普尔顿,“为了他对高层大气物理的研究,特别是为了发现所谓的阿普尔顿层。”

1946:Percy Williams Bridgman,“为了发明一种产生超高压的装置,以及他在高压物理领域用它所做的发现。”

1945:Wolfgang Pauli,“对于排除原理的发现,也称为Pauli原理。”

1944:Isidor Isaac Rabi,“对于记录原子核磁性质的共振方法。”

1943:Otto Stern,“感谢他对分子射线方法的发展和对质子磁矩的发现所作的贡献。”

1940-1942:无奖。

1939:欧内斯特·奥兰多·劳伦斯,”感谢他发明和发展回旋加速器,以及由此获得的结果,特别是在人工放射性方面元素:“KdSPE”“KdSPs”1938:“恩利克·费米”,用于演示中子辐照产生的新放射性元素的存在,以及他有关慢中子引起的核反应的相关发现。“KdSPE”“KdSPS”1937:Clinton Joseph Davisson和乔治·佩吉特·汤姆森,“因为他们实验性地发现了晶体对电子的衍射。”

1936:Victor Franz Hess,“因为他发现了宇宙辐射”,Carl David Anderson,“因为他发现了正电子。”

1935:James Chadwick,“对于中子的发现。”

1934:没有奖授予

1933:Erwin Schródinger和Paul Adrien Maurice Dirac,“对于原子理论新的生产形式的发现。”

1932:Werner Karl Heisenberg,“对于量子力学的创造,其应用,除其他外,导致了氢的同素异形体的发现。

1931:

1930:Chandrasekhara Venkata Raman爵士“因为他在光的散射方面的工作和以他命名的效应的发现”

1929:Louis Victor Pierre Raymond de Broglie王子“因为他发现了波的性质”关于电子。

1928:Owen Willans Richardson,“因为他对热离子现象的研究,特别是发现了以他命名的定律。”

1927:Arthur Holly Compton,“因为他发现了以他命名的效应”和Charles Thomson Rees Wilson,“因为他通过蒸汽凝结使带电粒子的路径可见的方法。”

1926:Jean Baptiste Perrin,“因为他对物质不连续结构的研究,特别是他对沉降平衡的发现。”

1925:James Franck和Gustav Ludwig Hertz,“因为他们发现了电子对原子影响的规律。

1924:Karl Manne Georg Siegbahn,“在X射线光谱领域的发现和研究”,

1923:Robert Andrews milikan,“关于电的基本电荷和光电效应的工作”,

1922:Niels Henrik David玻尔,“为了他在原子结构和原子辐射研究中的贡献。”

1921:阿尔伯特爱因斯坦,“为了他对理论物理学的贡献,特别是他对光电效应定律的发现。”

1920:查尔斯·爱德华·纪尧姆,“为了表彰他对原子结构和原子辐射的贡献”他发现了镍钢合金中的异常现象,从而在物理学上实现了精确的测量。

1919:Johannes Stark,“因为他发现了管道射线中的多普勒效应和电场中谱线的分裂。”

1918:Max Karl Ernst Ludwig Planck,“因为他提供了服务。”他发现了能量量子,从而推动了物理学的发展。

1917:Charles Glover Barkla,“因为他发现了元素特有的伦琴辐射。”

1916:No Prize award。

1915:William Henry Bragg爵士和William Lawrence Bragg,“因为他们在用X射线分析晶体结构方面的服务。”

1914:Max von Laue,“因为他发现了晶体对X射线的衍射。”

1913:Heike Kamerling Onnes,“因为他研究了低密度物质的性质”导致液氦生产的温度。

1912:Nils Gustaf Dalén,“用于照明灯塔和浮标的自动调节器的发明。”

1911:wihelm Wien,“关于热辐射定律的发现。”

1910:Johannes Diderik van der Waals,“关于气体和液体状态方程的工作。”

1909:Guglielmo Marconi和Karl Ferdinand Braun,“为了表彰他们对无线电报技术发展的贡献。”

1908:Gabriel Lippmann,“基于干扰现象的摄影色彩再现方法。”

1907:Albert Abraham Michelson,“为了他的光学精密仪器以及在他们的帮助下进行的光谱和计量研究。”

1906:Joseph John Thomson,“认识到他对气体导电的理论和实验研究的巨大优点。”

1905:Philipp Eduard Anton von Lenard,“因为他在阴极射线方面的工作。”

1904:Rayleigh勋爵(John William Strutt),“因为他对最重要气体的密度进行了研究,并且在这些研究中发现了氩。”

1903:Antoine Henri Beckerel,“,因为他对自己的发现所提供的非凡服务表示感谢。”以及皮埃尔·居里和玛丽·居里,née Sklodowska,“对他们联合研究亨利·贝克勒尔教授发现的辐射现象所提供的非凡服务的认可。”

1902:Hendrik Antoon Lorentz和Pieter Zeeman,“对非凡服务的认可”他们通过研究磁性对辐射现象的影响而作出贡献。

1901:Wilhelm Conrad Róntgen,“因为他发现了后来以他命名的非凡射线而作出的非凡贡献。”

When one is very poor , his ambition is not far-reaching

穷途短计。

Attendance at the concert was very poor

那次音乐会的上座率极低。

I thought his jokes were in very poor taste

我认为他讲的笑话太粗俗了。

He made a very poor witness for himself

他替自己作了一篇很软弱的证词。

The music was fine, but the book was very poor

音乐是出色的,但是唱词很糟。

Her remarks were in very poor taste

她的话真没意思。

His grandfather was a stonecutter, and he was very poor

他的祖父是个石匠,很贫困。

As her mother was now very poor she could expect no help from that quarter

她母亲已很贫困,她无法指望得到母亲的帮助。

"i'm afraid i shall be very poor pany, sir," hazarded presley

“我怕她们会觉得我这人很没趣的,先生,”普瑞斯莱壮起了胆子说。

One major disadvantage of anodized surfaces is their very poor thermal conductivity

阳极化处理表面的一个主要缺点是它的导热性非常低劣。

It is said that the children of the very poor are not brought up, but dragged up

据说穷人家的孩子不是抚养大的,而是没人管教就自个儿长起来了。

Certain colors, due to pigment ingredients, may inherently have very poor sulfuric acid resistance

某些颜料,由于色素组成成份的性质而导致耐酸性很差。

He remembered when his family was very poor and his mother had lost a pair of gloves which she treasured

他想起当年自己的家境一度非常贫寒,妈妈丢了一副手套,就像丢了一件宝贝。

On very poor soils, band placement of phosphate produces larger yields and makes more efficient use of the fertipzer

在很瘠薄的土壤上,磷肥做带状施用可以提高肥料的效用而获得增产。

In the advanced state of society, they are all very poor people who follow as a trade, what other people pursue as a pastime

在进步社会内,把别人消遣的事当作职业的人,都是极贫苦的。

"ah, he couldn't be a martyr even if he wished!" isabel sighed "that's a very poor position! "

“那么,即使他愿意杀身成仁,也办不到了!”伊莎贝尔叹了口气。“他的处境实在太可怜了。”

At stake is the well-being of the hundreds of milpons of very poor people in the world who depend on agriculture for their pvephood

世界上有亿万贫民以农业为生,他们的福利问题至关重大。

I am sure that , without modern weapons , i would make a very poor show of disputing the ownership of a cave with a bear

我断定,如果我在没有现代武器的情况下同一只熊争夺一个山洞,我会出丑的。

You want to know , that can be a very poor place

你要知道,那可是个很穷的地方。

You ' re a writer but you ' re very poor at guessing

你是个作家,猜事情可不在行

My engpsh is very poor , so i must study hard

我的英语很差,所以我得努力学习它。

You re a very poor speaker , said the king

“你是个可怜的狡辩者。 ”国王说。

I ' m very poor in maths so i ' m afraid i ' ll fail in it

我的数学很差,恐怕不会及格。

My engpsh is very poor , so i must work hard at it

我的英语很差,所以我得努力学习它

His odds were very poor after he sprained his wrist

他扭伤了手腕,获胜的可能性极小。

His odds are very poor after he sprained his wrist

他扭伤了手腕,获胜的可能性极小。

My engpsh is very poor , so i have to study hard

我的英语很差,所以我得努力学习它。

The play at the theatre was very poor fun

剧场里上演的那台戏太没意思了。

He never takes a taxi he must be very poor

他从不乘出租车,他一定很穷。

My engpsh is very poor and hope you will not mind it

我的英语水平不是太好,望您见谅

My engpsh is very poor , so i will work hard at it

我的英语水平很差,所以我得努力学习它。

P > a : he is from a very poor family

(他出身于一个非常贫困的家庭。 )

Nancy : our neighbor must be very poor

南希:咱们的邻居肯定特别穷。

Not so ; not cold , - but very poor instead

冷漠无情,实在我太寒伧。

Very good , quite good , average , quite poor or very poor

方面做得非常好、几好、一般、几差

A : he is from a very poor family

(他出身于一个非常贫困的家庭。 )

Although his grandfather was a nobleman , he was very poor

尽管他的祖父是贵族,他却非常穷困。

As far as i am concerned , the hotel ’ s service is very poor

就我而言,这家旅馆的服务很差。

Attendance at the concert was very poor

那次音乐会的上座率极低

Here was once a very poor person who was also very stingy

有一个很穷又很吝啬的人向上帝祷告。

臭氧(03)是1840年以后逐渐被人们认识的。臭氧是由三个氧原子组成的,由丁它有较高的氧化还原电位,所以有极强的氧化能力,可以降解水中多种杂质和杀灭多种致病菌、霉菌、病毒以及杀死诸如饰贝科软体动物幼虫(达98%)及水生物如剑水蚤、寡毛环节动物、水蚤轮虫等,因而早在1886年在法国就进行了臭氧杀菌试验。1893年在荷兰3 m³/h的净化水厂就投入运行。1906年法国尼斯(Nice)建成的臭氧处理水厂一直运行到1970年。尼斯水厂被看作是“饮水臭氧化处理诞生地”。我国1908年在福州水厂安装了一台德国西门子的臭氧发生器。到现在世界上已有数千个臭氧处理自来水厂,1980年加拿大蒙特利尔建成日供水230万吨消耗臭氧300kg/h的大型水厂,而其中绝大多数都是在发达国家建设的,发展中国家只有少量小规模应用。我国自八十年代以来陆续有少量自来水厂采用臭氧法,如北京田村水厂(15kg03/h),昆明水厂(33kg03/h),还有一些工矿企业内部水厂,如大庆油田,胜利油田,燕山石化等单位的水厂也都有臭氧设备在运行。与国外规模比较,我国只能说还处在萌芽状态。

臭氧水处理之所以在世界上得到长足的发展,不只是由于其有效的去杂与杀菌能力,而且在于经它处理后在水中不产生二次污染(残毒),多余的臭氧也会较快分解为氧气而不似氯剂在水中形成氯氨、氯仿等致癌物质,因而被世界公认为最安全的消毒剂。在发展中国家没有大规模推广,其原因是臭氧处理固定资产投入太高与运行电耗太高,在资金缺乏的国家在八十年代中期以来,我国众多瓶装水厂由于水质标准要求高,而瓶装水经济效益也高,而采用了臭氧法处理,小型臭氧发生器得以较大规模推广.正确应用臭氧处理水的瓶装水厂大都能达到双零(大肠杆菌,细菌总数均为零)的国际标准。

二、影响臭氧水处理灭菌效果的几个基本因素

由于臭氧水处理是个新事物,人们尚不太熟悉。有些厂家和施工单位以及臭氧用户误认为只要一按电钮,将臭氧气吹入水中,消毒即告完成。这个误区使臭氧的应用得不到应有的效果,甚至致使有些人对臭氧本身的杀菌能力产生了怀疑。

有的厂家使用极简易的臭氧发生器处理瓶装水,对其产生的臭氧浓度、处理后水溶臭氧浓度都一无所知,杀菌的确实效果令人无法相信。难以应用。笔者也曾采访过一家矿泉水厂,每小时5吨水量,设计单位选用了100g03/h的臭氧发生器,而在接触吸收装置内水的停留时间只有几秒钟,结果处理的水不合格,而灌装间大量臭氧尾气溢出,工人无法工作。

还有一些厂家生产的家用水处理器,无论是吴氧浓度还是处理时间都不够,这样的水处理器能否生产合格的饮用水,很值得怀疑。

因而正确认识臭氧在水中的物理、化学过程与臭氧杀菌的生物化学过程是极重要的。由于臭氧在水中溶解的机理以及臭氧对生物细胞物质交换的影响过程极为复杂,本文不能详细的探讨,只就臭氧杀菌做一般性的讨论。

1、水溶臭氧浓度与保持时间是杀菌的必要条件

军事医学科学院军队卫生研究所马义伦教授等经过对炭疽杆菌,枯草杆菌黑色变种进行臭氧处理试验,总结出杀菌动力学经验公式:

dN/dt=-KNtMCN

其中: N:菌数 t:时间 C:水中臭氧浓度 m、n是t与c的指数 K:效率常数,也可表示细菌抗力。

由以上公式可以看出单位时间的灭菌量是与水中臭氧浓度及处理时间的若十次疗成止比,可见K与N在不变动的情况下要达到杀菌的目的,必须保证臭氧在水中浓度与一定的接触时间。

2、保证水中臭氧浓度的必要性

要保证臭氧在水中的浓度需要很多条件,大致有水温、气压、气液的相对运动速度、臭氧气作用在液体表面的分压、臭氧气的表面积、水的粘度、密度、表面张力等,其中有些因素,如水温、气压、臭氧气作用在液体表面的分压至关重要。也有的,如水的密度、粘滞度、表面张力等,在某一具体条件下是不变的,就可以不予考虑,现将其中关系简单介绍如下:

气液两相间的传质强度取决于分子与湍流的扩散速度,可以用一般传质公式表示:

u=dG/dt=KF·△C

其中: u:传质速度,可用在t时间内从气相传入液相的臭氧量G确定,即dG/dt。 K:传质系数,F:气相与液相的接触表面积,△C传质过程中的动力,可用臭氧在实际情况下与平衡时的浓度差决定(即水中臭氧浓度与臭氧源中臭氧浓度差别越大,传质速度越大)。

分析一般传质方程式可以知道,首先要使臭氧尽多地溶入水中,就要尽量加大臭氧与水的接触表面积F,而这是接触装置决定的。

其次,△C说明臭氧发生器的浓度越高,越有利于水对臭氧的吸收·

第三,传质系数K则与多种因素有关,K(总传质系数)为气相传质系数K气与液相传质系数K液之和,而臭氧属于低溶解度气体,K气可忽略不计.而根据亨利一道尔顿定律,K液是多种物理参数的复合函数。

K液=f(T,P,u,w,p,ó)

其中臭氧溶解量与气体压力P成正比而与水温T成反比。

随着两相相对线速度的增大,气液两相接触表面积F及其更新速度也增大,但每个气泡与液体接触的时间会减小,因此从综合效果来看,气体-液体的相对线速度应维持在一个范围内较好.

液体的粘滞度u,密度p及气液间介面表面张力。的提高可使相间表面更新速度降低,并相应使K液减小,所以Km与u,p,o成反比,对于各种饮用水,此项可忽略不计。

在应用中,我们应关注温度、气压两个参数,而在设计接触装置时则应注意到水流、气流的相对速度,尤其是其中的温度,因为温度高了不但使水对臭氧的吸收效果下降,而且臭氧本身会因温度过高而分解。国内就曾发生过试图用臭氧处理70·℃的水温而没有取得任何效果的例证。

1894年梅尔费特(Mailfert)根据前人的实验报告求出以下臭氧在水中的浓度:

温度(摄氏度) O 118 15 19 27 40 55 60

溶解度(L气/L水) 064 05 O456 0381 O27 0112 O031 O

这组数据大致里线性,而且表明臭氧在水中的溶解度大约是氧的lO-15倍。

威诺萨(venosa)与奥帕特金(Opatken)指出,决定臭氧(或任何气体)在某液体中的溶解度的基本关系式是亨利定律.即在一定温度下,任何气体溶解于已知体积的液体中的重量,将与该气体作用在液体上的分压成正比。

而且此定律可推导出结论:在标准温度与压力下,臭氧是氧溶解度的13倍。

从亨利定律可以得出结论:要提高臭氧在水中的溶解度,必须提高臭氧气在整个气源中分压,即提高臭氧源的浓度,如果臭氧源的浓度不够,处理时间再长,水中臭氧浓度也提不高(因已达到浓度平衡)。

从以上论述,可以得到结论:

1、为保证杀菌效果,必须保证水中臭氧的一定浓度与处理时间。

2、为保证水中臭氧的一定浓度就需保证:

a.臭氧源的浓度。

b.一定的气温。

c.水温不能过高。

d.投入水中臭氧气的比表面积尽量大,使臭氧与水的接触机会更多。

根据国内外应用经验一般水质的饮用水消毒处理参数推荐为:水溶臭氧浓度O4mg/L,接触时间为4分钟,即CT值为16。臭氧投加量1-2mg/L,水温最好在25摄氏度以下。前苏联标准规定饮用水中臭氧浓度不低于O3mg/L。我国瓶装水行业推荐灌装时瓶内水臭氧浓度03mg/L

三、目前常用的三种接触装置与其效果

前节已提到接触装置的根本目的是保证臭氧在水中有尽量大的溶解度,为此,就需使臭氧气与水的接触面尽量大,有足够的接触时间,因而对接触装置的基本要求是:

1、能保证最优化的臭氧吸收效果。

2、接触装置工作时,工艺参数控制容易,工作稳定,安全性好。

3、能耗(搅拌或输送水、气所需动力)最低。

4、最小的体积下有最大的生产能力。

5、结构简单,用料便宜,制造与维修成本低。

一般常用的接触装置有三种:鼓泡塔或池:水射器(文丘里管)与固定螺旋混合器(单用或合用):搅拌器或螺旋泵:也有两种以上串联使用的,简介如下:

l、鼓泡法:大型水处理用鼓泡池,小型水处理则常用鼓泡塔,它要求鼓泡器有小(几个微米到几十微米孔径)的孔径以增加臭氧的比表面积,而且要求孔径布气均匀,以使水、气全面接触,尤其是在鼓泡池中用多个布气器时,同时一般要求从水面到布气器表面,水深不小于4-5m,以利于气、水充分接触。

它的优点是:操作方便,可以很容易改变运行参数而不影响投加效果和工作的稳定,动力消耗少,鼓泡塔结构简单,维修方便。

但其体积过于庞大,池式占地面积大,塔式要求较高厂房成本较高。

2、水射器(文丘里管)是利用高速水流在变径管道中流动造成的负压区吸入臭氧气,并形成湍流起到混合效果。

而在文丘里管后设置固定螺旋混合器则可进一步起搅拌水、气作用,在较长的距离内保持湍流状态以加强吸收。

这种装置由于混合时间很短,所以在其输出管道后常常还需加设贮水罐,以增加水、气接触时间,并使水流速降低以使尾气析出。

它的结构比鼓泡塔大大减小,生产成本低,但需加设水泵以保证水的喷射速度,而且工艺参数不易掌握,处理水量不能随意调节,否则将发生气、液两相分离,影响吸收效果。

3、搅拌法:早期生产的搅拌器类似单缸洗衣机,只是电机上置、外筒做成多角型,利用搅拌造成的涡流使气泡打碎,溶入液体。此类搅拌法效果差,动力消耗大,比鼓泡法体积小但成本并不低,由于有机械运动及臭氧腐蚀,所以机器寿命低,维修费用高。

近年有涡轮泵上市,混合效果很好,而且体积小巧,工r艺参数操作容易,但结构复杂成本高,动力消耗大,维修复杂,在它的管路后而也需设置贮水罐。

四、臭氧浓度测试

由于臭氧是化学性质极不稳定的气体,收集并短时间内测量其在空气中及在水中的含量就成为比较困难的问题。如前所述,要保证臭氧对水的净化杀菌目的,需要控制种种参数,其中各项,只有臭氧浓度的量测是困难的。一些臭氧发生器生产厂家自己不会测试,也不知道自己的产品所产臭氧的浓度,更有个别厂家利用测试困难肆意夸大自己产品性能,造成极不好的影响,以至影响到人们对臭氧杀菌能力的信任。

应该说现在臭氧浓度测试已经不难了。在实际应用中臭氧浓度是保证消毒效果的基础,也是鉴别臭氧发生器真正性能的必要手段,因此在推广臭氧应用的同时,应该同时推广臭氧的测量手段。

本篇不拟对臭氧测试做详细论述,有兴趣的同志可参考第五次全国消毒学术交流会上李汉忠发表的有关文章,这里只作简单介绍。

l、碘量法:过去最经典的测量方法,用臭氧化气使碘化钾溶液中的碘游离出来而显色,然后用硫代硫酸钠滴定还原至无色,以消耗的硫代硫酸钠数量计算臭氧浓度。此法显色直观,设备便宜,但要用各种药品、洗瓶、量筒、天平、滴定管等化学试验设备,使用不方便,且易受其它氧化剂(如N0、CL等)干扰,I比法目前仍为我国的标准测量方法。

2、紫外吸收法:利用臭氧对波长入=254nm紫外光的最大吸收值,使紫外光在臭氧气氛中衰减,再经光电元件、电子电路(比较电路,数据处理,数模转换)得到数据输出,此方法精确,可连续在线量测。己被美国等工业先进国家选为标准方法,但该仪器价格较贵,一般作为检测单位与生产、科研单位使用。

3、电化学法:利用水中臭氧在电活化表面产生的电化学还原作用,电化回路中电流变化曲线与溶液中臭氧浓度成正比,这种仪器具有数据输出功能,可在线测量而且能实现对臭氧发生器的闭环反馈控制,价格比紫外法便宜,体积也较小。目前在大型水处理工程中应用。

4、比色法:与碘量法同为化学法,是利用臭氧对化学试剂反应发生的显色或脱色现象确定臭氧浓度。它可用碘化钾、邻联甲苯胺或靛兰染料等多种化学物质,可直接肉眼观察与标准色管或比色盘比较,也可用分光光度计检测,此法简单易行,成本不高,在我国目前水平适于推广,但测试药品是一次性消耗品。

5、DPD臭氧水浓度测试试剂:盒中的DPD试剂采用双铝箔片剂包装,药片含崩解剂,可快速溶解,产品对臭氧高度敏感,可精确到005ppm,比色卡经精密分色制成,配有专用的比色管,具有使用方便、保存期长、质量稳定可靠等优点,配置的DPD法对应比色色阶溶液,与KIO3标准溶液做比较,测定结果准确可靠。本法尤其适合于现场分析,完全可与进口同类产品媲美,在水行业、食品行业、饮料和制药产业有着广阔的应用前景。目前DPD臭氧测定试剂盒已为包括乐百氏、娃哈哈、怡宝、农夫山泉、景田、益力在内的全国几百家知名矿泉水、纯净水企业所广泛应用。

  臭氧(03)是1840年以后逐渐被人们认识的。臭氧是由三个氧原子组成的,由丁它有较高的氧化还原电位,所以有极强的氧化能力,可以降解水中多种杂质和杀灭多种致病菌、霉菌、病毒以及杀死诸如饰贝科软体动物幼虫(达98%)及水生物如剑水蚤、寡毛环节动物、水蚤轮虫等,因而早在1886年在法国就进行了臭氧杀菌试验。1893年在荷兰3 m³/h的净化水厂就投入运行。1906年法国尼斯(Nice)建成的臭氧处理水厂一直运行到1970年。尼斯水厂被看作是“饮水臭氧化处理诞生地”。我国1908年在福州水厂安装了一台德国西门子的臭氧发生器。到现在世界上已有数千个臭氧处理自来水厂,1980年加拿大蒙特利尔建成日供水230万吨消耗臭氧300kg/h的大型水厂,而其中绝大多数都是在发达国家建设的,发展中国家只有少量小规模应用。我国自八十年代以来陆续有少量自来水厂采用臭氧法,如北京田村水厂(15kg03/h),昆明水厂(33kg03/h),还有一些工矿企业内部水厂,如大庆油田,胜利油田,燕山石化等单位的水厂也都有臭氧设备在运行。与国外规模比较,我国只能说还处在萌芽状态。

  臭氧水处理之所以在世界上得到长足的发展,不只是由于其有效的去杂与杀菌能力,而且在于经它处理后在水中不产生二次污染(残毒),多余的臭氧也会较快分解为氧气而不似氯剂在水中形成氯氨、氯仿等致癌物质,因而被世界公认为最安全的消毒剂。在发展中国家没有大规模推广,其原因是臭氧处理固定资产投入太高与运行电耗太高,在资金缺乏的国家在八十年代中期以来,我国众多瓶装水厂由于水质标准要求高,而瓶装水经济效益也高,而采用了臭氧法处理,小型臭氧发生器得以较大规模推广.正确应用臭氧处理水的瓶装水厂大都能达到双零(大肠杆菌,细菌总数均为零)的国际标准。

  二、影响臭氧水处理灭菌效果的几个基本因素

  由于臭氧水处理是个新事物,人们尚不太熟悉。有些厂家和施工单位以及臭氧用户误认为只要一按电钮,将臭氧气吹入水中,消毒即告完成。这个误区使臭氧的应用得不到应有的效果,甚至致使有些人对臭氧本身的杀菌能力产生了怀疑。

  有的厂家使用极简易的臭氧发生器处理瓶装水,对其产生的臭氧浓度、处理后水溶臭氧浓度都一无所知,杀菌的确实效果令人无法相信。难以应用。笔者也曾采访过一家矿泉水厂,每小时5吨水量,设计单位选用了100g03/h的臭氧发生器,而在接触吸收装置内水的停留时间只有几秒钟,结果处理的水不合格,而灌装间大量臭氧尾气溢出,工人无法工作。

  还有一些厂家生产的家用水处理器,无论是吴氧浓度还是处理时间都不够,这样的水处理器能否生产合格的饮用水,很值得怀疑。

  因而正确认识臭氧在水中的物理、化学过程与臭氧杀菌的生物化学过程是极重要的。由于臭氧在水中溶解的机理以及臭氧对生物细胞物质交换的影响过程极为复杂,本文不能详细的探讨,只就臭氧杀菌做一般性的讨论。

  1、水溶臭氧浓度与保持时间是杀菌的必要条件

  军事医学科学院军队卫生研究所马义伦教授等经过对炭疽杆菌,枯草杆菌黑色变种进行臭氧处理试验,总结出杀菌动力学经验公式:

  dN/dt=-KNtMCN

  其中: N:菌数 t:时间 C:水中臭氧浓度 m、n是t与c的指数 K:效率常数,也可表示细菌抗力。

  由以上公式可以看出单位时间的灭菌量是与水中臭氧浓度及处理时间的若十次疗成止比,可见K与N在不变动的情况下要达到杀菌的目的,必须保证臭氧在水中浓度与一定的接触时间。

  2、保证水中臭氧浓度的必要性

  要保证臭氧在水中的浓度需要很多条件,大致有水温、气压、气液的相对运动速度、臭氧气作用在液体表面的分压、臭氧气的表面积、水的粘度、密度、表面张力等,其中有些因素,如水温、气压、臭氧气作用在液体表面的分压至关重要。也有的,如水的密度、粘滞度、表面张力等,在某一具体条件下是不变的,就可以不予考虑,现将其中关系简单介绍如下:

  气液两相间的传质强度取决于分子与湍流的扩散速度,可以用一般传质公式表示:

  u=dG/dt=KF·△C

  其中: u:传质速度,可用在t时间内从气相传入液相的臭氧量G确定,即dG/dt。 K:传质系数,F:气相与液相的接触表面积,△C传质过程中的动力,可用臭氧在实际情况下与平衡时的浓度差决定(即水中臭氧浓度与臭氧源中臭氧浓度差别越大,传质速度越大)。

  分析一般传质方程式可以知道,首先要使臭氧尽多地溶入水中,就要尽量加大臭氧与水的接触表面积F,而这是接触装置决定的。

  其次,△C说明臭氧发生器的浓度越高,越有利于水对臭氧的吸收·

  第三,传质系数K则与多种因素有关,K(总传质系数)为气相传质系数K气与液相传质系数K液之和,而臭氧属于低溶解度气体,K气可忽略不计.而根据亨利一道尔顿定律,K液是多种物理参数的复合函数。

  K液=f(T,P,u,w,p,ó)

  其中臭氧溶解量与气体压力P成正比而与水温T成反比。

  随着两相相对线速度的增大,气液两相接触表面积F及其更新速度也增大,但每个气泡与液体接触的时间会减小,因此从综合效果来看,气体-液体的相对线速度应维持在一个范围内较好.

  液体的粘滞度u,密度p及气液间介面表面张力。的提高可使相间表面更新速度降低,并相应使K液减小,所以Km与u,p,o成反比,对于各种饮用水,此项可忽略不计。

  在应用中,我们应关注温度、气压两个参数,而在设计接触装置时则应注意到水流、气流的相对速度,尤其是其中的温度,因为温度高了不但使水对臭氧的吸收效果下降,而且臭氧本身会因温度过高而分解。国内就曾发生过试图用臭氧处理70·℃的水温而没有取得任何效果的例证。

  1894年梅尔费特(Mailfert)根据前人的实验报告求出以下臭氧在水中的浓度:

  温度(摄氏度) O 118 15 19 27 40 55 60

  溶解度(L气/L水) 064 05 O456 0381 O27 0112 O031 O

  这组数据大致里线性,而且表明臭氧在水中的溶解度大约是氧的lO-15倍。

  威诺萨(venosa)与奥帕特金(Opatken)指出,决定臭氧(或任何气体)在某液体中的溶解度的基本关系式是亨利定律.即在一定温度下,任何气体溶解于已知体积的液体中的重量,将与该气体作用在液体上的分压成正比。

  而且此定律可推导出结论:在标准温度与压力下,臭氧是氧溶解度的13倍。

  从亨利定律可以得出结论:要提高臭氧在水中的溶解度,必须提高臭氧气在整个气源中分压,即提高臭氧源的浓度,如果臭氧源的浓度不够,处理时间再长,水中臭氧浓度也提不高(因已达到浓度平衡)。

  从以上论述,可以得到结论:

  1、为保证杀菌效果,必须保证水中臭氧的一定浓度与处理时间。

  2、为保证水中臭氧的一定浓度就需保证:

  a.臭氧源的浓度。

  b.一定的气温。

  c.水温不能过高。

  d.投入水中臭氧气的比表面积尽量大,使臭氧与水的接触机会更多。

  根据国内外应用经验一般水质的饮用水消毒处理参数推荐为:水溶臭氧浓度O4mg/L,接触时间为4分钟,即CT值为16。臭氧投加量1-2mg/L,水温最好在25摄氏度以下。前苏联标准规定饮用水中臭氧浓度不低于O3mg/L。我国瓶装水行业推荐灌装时瓶内水臭氧浓度03mg/L

  三、目前常用的三种接触装置与其效果

  前节已提到接触装置的根本目的是保证臭氧在水中有尽量大的溶解度,为此,就需使臭氧气与水的接触面尽量大,有足够的接触时间,因而对接触装置的基本要求是:

  1、能保证最优化的臭氧吸收效果。

  2、接触装置工作时,工艺参数控制容易,工作稳定,安全性好。

  3、能耗(搅拌或输送水、气所需动力)最低。

  4、最小的体积下有最大的生产能力。

  5、结构简单,用料便宜,制造与维修成本低。

  一般常用的接触装置有三种:鼓泡塔或池:水射器(文丘里管)与固定螺旋混合器(单用或合用):搅拌器或螺旋泵:也有两种以上串联使用的,简介如下:

  l、鼓泡法:大型水处理用鼓泡池,小型水处理则常用鼓泡塔,它要求鼓泡器有小(几个微米到几十微米孔径)的孔径以增加臭氧的比表面积,而且要求孔径布气均匀,以使水、气全面接触,尤其是在鼓泡池中用多个布气器时,同时一般要求从水面到布气器表面,水深不小于4-5m,以利于气、水充分接触。

  它的优点是:操作方便,可以很容易改变运行参数而不影响投加效果和工作的稳定,动力消耗少,鼓泡塔结构简单,维修方便。

  但其体积过于庞大,池式占地面积大,塔式要求较高厂房成本较高。

  2、水射器(文丘里管)是利用高速水流在变径管道中流动造成的负压区吸入臭氧气,并形成湍流起到混合效果。

  而在文丘里管后设置固定螺旋混合器则可进一步起搅拌水、气作用,在较长的距离内保持湍流状态以加强吸收。

  这种装置由于混合时间很短,所以在其输出管道后常常还需加设贮水罐,以增加水、气接触时间,并使水流速降低以使尾气析出。

  它的结构比鼓泡塔大大减小,生产成本低,但需加设水泵以保证水的喷射速度,而且工艺参数不易掌握,处理水量不能随意调节,否则将发生气、液两相分离,影响吸收效果。

  3、搅拌法:早期生产的搅拌器类似单缸洗衣机,只是电机上置、外筒做成多角型,利用搅拌造成的涡流使气泡打碎,溶入液体。此类搅拌法效果差,动力消耗大,比鼓泡法体积小但成本并不低,由于有机械运动及臭氧腐蚀,所以机器寿命低,维修费用高。

  近年有涡轮泵上市,混合效果很好,而且体积小巧,工r艺参数操作容易,但结构复杂成本高,动力消耗大,维修复杂,在它的管路后而也需设置贮水罐。

  四、臭氧浓度测试

  由于臭氧是化学性质极不稳定的气体,收集并短时间内测量其在空气中及在水中的含量就成为比较困难的问题。如前所述,要保证臭氧对水的净化杀菌目的,需要控制种种参数,其中各项,只有臭氧浓度的量测是困难的。一些臭氧发生器生产厂家自己不会测试,也不知道自己的产品所产臭氧的浓度,更有个别厂家利用测试困难肆意夸大自己产品性能,造成极不好的影响,以至影响到人们对臭氧杀菌能力的信任。

  应该说现在臭氧浓度测试已经不难了。在实际应用中臭氧浓度是保证消毒效果的基础,也是鉴别臭氧发生器真正性能的必要手段,因此在推广臭氧应用的同时,应该同时推广臭氧的测量手段。

  本篇不拟对臭氧测试做详细论述,有兴趣的同志可参考第五次全国消毒学术交流会上李汉忠发表的有关文章,这里只作简单介绍。

  l、碘量法:过去最经典的测量方法,用臭氧化气使碘化钾溶液中的碘游离出来而显色,然后用硫代硫酸钠滴定还原至无色,以消耗的硫代硫酸钠数量计算臭氧浓度。此法显色直观,设备便宜,但要用各种药品、洗瓶、量筒、天平、滴定管等化学试验设备,使用不方便,且易受其它氧化剂(如N0、CL等)干扰,I比法目前仍为我国的标准测量方法。

  2、紫外吸收法:利用臭氧对波长入=254nm紫外光的最大吸收值,使紫外光在臭氧气氛中衰减,再经光电元件、电子电路(比较电路,数据处理,数模转换)得到数据输出,此方法精确,可连续在线量测。己被美国等工业先进国家选为标准方法,但该仪器价格较贵,一般作为检测单位与生产、科研单位使用。

  3、电化学法:利用水中臭氧在电活化表面产生的电化学还原作用,电化回路中电流变化曲线与溶液中臭氧浓度成正比,这种仪器具有数据输出功能,可在线测量而且能实现对臭氧发生器的闭环反馈控制,价格比紫外法便宜,体积也较小。目前在大型水处理工程中应用。

  4、比色法:与碘量法同为化学法,是利用臭氧对化学试剂反应发生的显色或脱色现象确定臭氧浓度。它可用碘化钾、邻联甲苯胺或靛兰染料等多种化学物质,可直接肉眼观察与标准色管或比色盘比较,也可用分光光度计检测,此法简单易行,成本不高,在我国目前水平适于推广,但测试药品是一次性消耗品。

  5、DPD臭氧水浓度测试试剂:盒中的DPD试剂采用双铝箔片剂包装,药片含崩解剂,可快速溶解,产品对臭氧高度敏感,可精确到005ppm,比色卡经精密分色制成,配有专用的比色管,具有使用方便、保存期长、质量稳定可靠等优点,配置的DPD法对应比色色阶溶液,与KIO3标准溶液做比较,测定结果准确可靠。本法尤其适合于现场分析,完全可与进口同类产品媲美,在水行业、食品行业、饮料和制药产业有着广阔的应用前景。目前DPD臭氧测定试剂盒已为包括乐百氏、娃哈哈、怡宝、农夫山泉、景田、益力在内的全国几百家知名矿泉水、纯净水企业所广泛应用。

 物理学给人类提供了大量的物质财富,同时也提供了精神财富。物理学的高技术和强渗透性也使之成为社会发展的重要推动力。下面是我为大家整理的物理学论文,供大家参考。

 物理学论文范文一:物理学在科技创新中的效用

 摘要:论述了X射线的发现,不仅对医学诊断有重大影响,还直接影响20世纪许多重大发现;半导体的发明,使微电子产业称雄20世纪,并促进信息技术的高速发展,物理学是计算机硬件的基础;原子能理论的提出,使原子能逐步取代石化能源,给人类提供巨大的清洁能源;激光理论的提出及激光器的发明,使激光在工农业生产、医疗、通信、军事上得到广泛应用;蓝光LED的发明,将点亮整个21世纪事实告诉我们,是物理学推动科技创新,由此得出结论:物理学是科技创新的源泉昭示人们,高校作为培养人才的场所,理工科要重视大学物理课程

 关键词:X射线;半导体;原子能;激光;蓝光LED;科技创新;大学物理

 1引言

 物理学是一门研究物质世界最基本的结构、最普遍的相互作用以及最一般的运动规律的科学[1-3],其内容广博、精深,研究方法多样、巧妙,被视为一切自然科学的基础纵观物理学发展历史可以发现:其蕴含的科学思维和科学方法能够有效促进学生能力的培养和知识的形成,同时,其每一次新的发现都会带动人类社会的科技创新和科技发展正因如此,大学物理成为了高等学校理、工科专业必修的一门基础课程按照教育部颁发的相关文件要求[4-5],大学物理课程最低学时数为126学时,其中理科、师范类非物理专业不少于144学时;大学物理实验最低学时数为54学时,其中工科、师范类非物理专业不少于64学时然而调查显示,众多高校(尤其是新建本科院校)并没有严格按照教育部颁发的课程基本要求开设大学物理及其实验课程他们往往打着“宽口径、应用型”的晃子,大幅压缩大学物理和大学物理实验课程的学时,如今,大学物理及其实验课程的总学时数实际仅为32-96学时,远远低于教育部要求的最低标准(180学时)试问这么少的课时怎么讲丰富、深奥的大学物理怎么能够真正发挥出大学物理的作用于是有的院、系要求只讲力学,有的要求只讲热学,有的则要求只讲电磁学,…面对这种情况,大学物理的授课教师在无奈状态下讲授大学物理从《大学物理课程报告论坛》上获悉,这不是个别学校的做法,在全国具有普遍性殊不知,力、热、光、电磁、原子是一个完整的体系,相互联系,缺一不可这种以消减教学内容为代价,解决课时不足的做法,就如同削足适履,是对教育规律不尊重,是管理者思想意识落后的一种体现本文且不论述物理学是理工科必修的一门基础课,只论及物理学是科技创新的源泉这一命题,以期提高教育管理者对大学物理课程重要性的认识

 2物理学是科技创新的源泉

 且不说力学和热力学的发展,以蒸汽机为标志引发了第一次工业革命,欧洲实现了机械化;且不说库伦、法拉第、楞次、安培、麦克斯韦等创立的电磁学的发展,以电动机为标志引发了第二次工业革命,欧美实现了电气化这两次工业革命没有发生在中国,使中国近代落后了本文着重论述近代物理学的发展对科学技术的巨大推动作用,从而得出结论:物理学是科技创新的源泉1895年,威廉•伦琴(WilhelmR魻ntgen)发现X射线,这种射线在电场、磁场中不发生偏转,穿透能力很强,由于当时不知道它是什么,故取名X射线直到1912年,劳厄(MaxvonLaue)用晶体中的点阵作为衍射光栅,确定它是一种光波,波长为10-10m的数量级[6]伦琴获1901年诺贝尔物理学奖,他发现的X射线开创了医学影像技术,利用X光机探测骨骼的病变,胸腔X光片诊断肺部病变,腹腔X光片检测肠道梗塞CT成像也是利用X射线成像,CT成像既可以提供二维(2D)横切面又可以提供三维(3D)立体表现图像,它可以清楚地展示被检测部位的内部结构,可以准确确定病变位置当今,各医院都设置放射科,X射线在医学上得到充分利用X射线的发现不仅对医学诊断有重大影响,还直接影响20世纪许多重大科学发现1913-1914年,威廉•享利•布拉格(willianHenrgBragg)和威廉•劳仑斯•布拉格(WillianLawrenceBragg)提供布拉格方程[6,P140]2dsinα=kλ(k=1,2,3…)式中d为晶格常数,α为入射光与晶面夹角,λ为X射线波长布拉格父子提出使用X射线衍射研究晶体原子、分子结构,创立了X射线晶体结构分析这一学科,布拉格父子获1915年诺贝尔物理学奖当今,X射线衍射仪不仅在物理学研究,而且在化学、生物、地质、矿产、材料等学科得到广泛应用,所有从事自然科学研究的科研院所和大多数高等学校都有X射线衍射仪,它是研究物质结构的必备仪器1907年,威廉•汤姆孙(W•Thomson)发现电子,电子质量me=911×10-31kg,电子荷电e=-1602×10-19C电子的荷电性引发了20世纪产生革命1947年,美国的巴丁、布莱顿和肖克利研究半导体材料时,发现Ge晶体具有放大作用,发明了晶体三极管,很快取代电子管,随后晶体管电路不断向微型化发展1958年,美国的工程师基尔比制成第一批集成电路1971年,英特尔公司的霍夫把计算机的中央处理器的全部功能集成在一块芯片上,制成世界上第一个微处理器80年代末,芯片上集成的元件数已突破1000万大关微电子技术改变了人类生活,微电子技术称雄20世纪,进入21世纪微电子产业仍继续称雄到各个工业区看看,发现电子厂比比皆是,这真是小小电子转动了整个地球啊!电子不仅具有荷电性,还具有荷磁性

 1925年,乌伦贝克—哥德斯密脱(Uhlenbeck-Goudsmit)提出自旋假说,每个电子都具有自旋角动量S轧,它在空间任意方向上的投影只可能取两个数值,Sz=±h2;电子具有荷磁性,每个电子的磁矩为MSz=芎μB(μB为玻尔磁子)[7]电子的荷磁性沉睡了半个多世纪,直到1988年阿贝尔•费尔(AlberFert)和彼得•格林贝格尔(PeterGrünberg)发现在Fe/Cr多层膜中,材料的电阻率受材料磁化状态的变化呈显著改变,其机理是相临铁磁层间通过非磁性Cr产生反铁磁耦合,不加磁场时电阻率大,当外加磁场时,相邻铁磁层的磁矩方向排列一致,对电子的散射弱,电阻率小利用磁性控制电子的输运,提出巨磁电阻效应(giantmagnetoresistance,GMR),磁电阻MR定义MR=ρ(0)+ρ(H)ρ(0)×100%式中ρ(0)为零场下的电阻率,ρ(H)为加场下的电阻率[8]GMR效应的发现引起科技界强烈关注,1994年IBM公司依据巨磁电阻效应原理,研制出“新型读出磁头”,此前的磁头是用锰铁磁体,磁电阻MR只有1%-2%,而新型读出磁头的MR约50%,将磁盘记录密度提高了17倍,有利于器件小型化,利用新型读出磁头的MR才出现笔记本电脑、MP3等,GMR效应在磁传感器、数控机库、非接触开关、旋转编码器等方面得到广泛应用阿尔贝费尔和彼得格林贝格尔获2007年诺贝尔物理学奖1993年,Helmolt等人[9]在La2/3Ba1/3MnO3薄膜中观察到MR高达105%,称为庞磁电阻(Colossalmagnetoresistance,CMR),钙钛矿氧化物中有如此高的磁电阻,在磁传感、磁存储、自旋晶体管、磁制冷等方面有着诱人的应用前景,引起凝聚态物理和材料科学科研人员的极大关注[10-12]然而,CMR效应还没有得到实际应用,原因是要实现大的MR需要特斯拉量级的外磁场,问题出在CMR产生的物理机制还没有真正弄清楚1905年,爱因斯坦提出[13]:“就一个粒子来说,如果由于自身内部的过程使它的能量减小了,它的静质量也将相应地减小”提出著名的质能关系式△E=△m莓C2式中△m表示经过反应后粒子的总静质量的减小,△E表示核反应释放的能量爱因斯坦又提出实现热核反应的途径:“用那些所含能量是高度可变的物体(比如用镭盐)来验证这个理论,不是不可能成功的”按照爱因斯坦的这一重大物理学理论,1938年物理学家发现重原子核裂变核裂变首先被用于战争,1945年8月6日和9日,美国对日本的广岛和长崎各投下一颗原子弹,迫使日本接受《波茨坦公告》,于8月15日宣布无条件投降后来原子能很快得到和平利用,1954年莫斯科附近的奥布宁斯克原子能发电站投入运行2009年,美国有104座核电站,核电站发电量占本国发电总量的20%,法国有59台机组,占80%;日本有55座核电站,占30%截至2015年4月,我国运行的核电站有23座,在建核电站有26座,产能为214千兆瓦,核电站发电量占我国发电总量不足3%,所以我国提出大力发展核电,制定了到2020年核电装机总容量达到58千兆瓦的目标核能的利用,一方面减少了化石能源的消耗,从而减少了产生温室效应的气体———二氧化碳的排放,另一方面有力地解决能源危机利用海水中的氘和氚发生核聚变可以产生巨大能量,受控核聚变正在研究中,若受控核聚变研究成功将为人类提供取之不尽用之不竭的能量那时,能源危机彻底解除

 20世纪最杰出的成果是计算机,物理学是计算机硬件的基础从1946年计算机问世以来,经历了第一至第五代,计算机硬件中的电子元件随着物理学的进步,依次经历了电子管、晶体管、中小规模集成电路、大规模集成电路、超大规模集成电路;主存储器用的是磁性材料,随着物理学的进步,磁性材料的性能越来越高,计算机的硬盘越来越小近日在第十六届全国磁学和磁性材料会议(2015年10月21—25日)上获悉,中科院强磁场中心、中科院物理所等,正在对斯格明子(skyrmions)进行攻关,斯格明子具有拓扑纳米磁结构,将来的笔记本电脑的硬盘只有花生大小,ipod平板电脑的硬盘缩小到米粒大小量子力学催生出隧道二极管,量子力学指导着研究电子器件大小的极限,光学纤维的发明为计算机网络提供数据通道

 1916年,爱因斯坦提出光受激辐射原理,时隔44年,哥伦比亚大学的希奥多•梅曼(TheodoreMaiman)于1960制成第一台激光器[14]由于激光具有单色性好,相干性好,方向性好和亮度高等特点,在医疗、农业、通讯、金属微加工,军事等方面得到广泛应用激光在其他方面的应用暂不展开论述,只谈谈激光加工技术在工业生产上的应用激光加工技术对材料进行切割、焊接、表面处理、微加工等,激光加工技术具有突出特点:不接触加工工件,对工件无污染;光点小,能量集中;激光束容易聚焦、导向,便于自动化控制;安全可靠,不会对材料造成机械挤压或机械应力;切割面光滑、无毛刺;切割面细小,割缝一般在01-02mm;适合大件产品的加工等在汽车、飞机、微电子、钢铁等行业得到广泛应用2014年,仅我国激光加工产业总收入约270亿人民币,其中激光加工设备销售额达215亿人民币

 2014年,诺贝尔物理学奖授予赤崎勇、天野浩、中山修二等三位科学家,是因为他们发明了蓝色发光二极管(LED),帮助人们以更节能的方式获得白光光源他们的突出贡献在于,在三基色红、绿、蓝中,红光LED和绿光LED早已发明,但制造蓝光LED长期以来是个难题,他们三人于20世纪90年代发明了蓝光LED,这样三基色LED全被找到了,制造出来的LED灯用于照明使消费者感到舒适这种LED灯耗能很低,耗能不到普通灯泡的1/20,全世界发的电40%用于照明,若把普通灯泡都换成LED灯,全世界每个节省的电能数字惊人!物理学研究给人类带来不可估量的益处2010年,英国曼彻斯特大学科学家安德烈•海姆(AndreGeim)和康斯坦丁•诺沃肖洛夫(Kon-stantinNovoselov),因发明石墨烯材料,获得诺贝尔物理学奖目前,集成电路晶体管普遍采用硅材料制造,当硅材料尺寸小于10纳米时,用它制造出的晶体管稳定性变差而石墨烯可以被刻成尺寸不到1个分子大小的单电子晶体管此外,石墨烯高度稳定,即使被切成1纳米宽的元件,导电性也很好因此,石墨烯被普遍认为会最终替代硅,从而引发电子工业革命[14]2012年,法国科学家沙吉•哈罗彻(SergeHaroche)与美国科学家大卫•温兰德(DavidJwin-land),在“突破性的试验方法使得测量和操纵单个量子系统成为可能”他们的突破性的方法,使得这一领域的研究朝着基于量子物理学而建造一种新型超快计算机迈出了第一步[16]

 2013年,由清华大学薛其坤院士领衔、清华大学物理系和中科院物理研究所组成的实验团队从实验上首次观测到量子反常霍尔效应早在2010年,我国理论物理学家方忠、戴希等与张首晟教授合作,提出磁性掺杂的三维拓扑绝缘体有可能是实现量子化反常霍尔效应的最佳体系,薛其坤等在这一理论指导下开展实验研究,从实验上首次观测到量子反常霍尔效应我们使用计算机的时候,会遇到计算机发热、能量损耗、速度变慢等问题这是因为常态下芯片中的电子运动没有特定的轨道、相互碰撞从而发生能量损耗而量子霍尔效应则可以对电子的运动制定一个规则,电子自旋向上的在一个跑道上,自旋向下的在另一个跑道上,犹如在高速公路上,它们在各自的跑道上“一往无前”地前进,不产生电子相互碰撞,不会产生热能损耗通过密度集成,将来计算机的体积也将大大缩小,千亿次的超级计算机有望做成现在的iPad那么大因此,这一科研成果的应用前景十分广阔[17]物理学的每一个重大发现、重大发明,都会开辟一块新天地,带来产业革命,推动社会进步,创造巨大物质财富纵观科学与技术发展史,可以看出物理学是科技创新的源泉

 3结语

 论述了X射线,电子、半导体、原子能、激光、蓝光LED等的发现或发明对人类进步的巨大推动作用,自然得出结论,物理学是科技创新的源泉打开国门看一看,美国的著名大学非常注重大学物理,加州理工大学所有一、二年级的公共物理课程总学时为540,英、法、德也在400-500学时[18]国内高校只有中国科学技术大学的大学物理课程做到了与国际接轨,以他们的数学与应用数学为例,大一开设:力学与热学80学时,大学物理—基础实验54学时;大二开设:电磁学80学时,光学与原子物理80学时,大学物理—综合实验54学时;大三开设:理论力学60学时,大学物理及实验总计408学时在大力倡导全民创业万众创新的今天,高等学校理所应当重视物理学教学各高校的理工科要按照教育部高等学校非物理类专业物理基础课程教学指导委员会颁发的《非物理类理工学科大学物理课程/实验教学基本要求》给足大学物理课程及大学物理实验课时

 参考文献:

 〔1〕祝之光物理学[M]北京:高等教育出版社,20121-10

 〔2〕马文蔚,周雨青物理学教程[M]北京:高等教育出版社,2006I-V1

 〔3〕倪致祥,朱永忠,袁广宇,黄时中,大学物理学[M]合肥:中国科学技术大学出版社,2005前言

 〔4〕教育部高等学校非物理类专业物理基础课程教学指导分委员会非物理类理工学科大学物理课程教学基本要求[J]物理与工程,2006,16(5)

 〔5〕教育部高等学校非物理类专业物理基础课程教学指导分委员会非物理类理工学科大学物理实验课程教学基本要求[J]物理与工程,2006,16(4):1-3

 〔6〕姚启钧,光学教程[M]北京;高等教育出版社,2002138-139

 〔7〕张怪慈量子力学简明教授[M]北京:人民教育出版社,1979182-183

 〔8〕孙阳(导师:张裕恒)钙钛矿结构氧化物中的超大磁电阻效应及相关物性[D]中国科学技术大学,200110-11

 物理学论文范文二:初中物理学科全息教学的运用

 一、全息教学在初中物理教学中运用的策略

 1运用全息理论,对初中物理教学课型进行合理选择与搭配

 新课改以后,物理课堂教学由传统的讲授内容方面转变到物理的过程方面,其核心是给学生提供机会、创造机会。因此,在物理教学中,教师要善于运用全息教学理论,并根据学生的生活经验和已有的知识背景,对课型合理地选择与搭配,带领学生运用多种方法对物理知识进行重演在现,激励学生发现并提出问题,进而激发学生学习物理的兴趣,培养学生创新和探究能力。例如:在讲静电屏蔽时,首先带领学生对静电屏蔽进行了实验,并得到了正确的结果。突然有一个学生提出问题“:用电吹风吹头时,电吹风其对电视信号有影响,那么是不是静电屏蔽不完全成立”于是带领学生们又做了如下实验:将一个手机放在一个密闭的纸盒内,用另一部手机呼叫,学生们听到了响声。再让同学思考,如果将手机放在前面做过实验的金属笼内,是否能听到铃声多数学生根据静电屏蔽原理猜测肯定不能。然而将手机放进铁笼后,仍能听到铃声。学生们都感到疑惑,难道静电平衡理论有误针对这种现象让大家思考了“静电”二字,然后向学生们解释手机信号是一种电磁波而不是静电,其属一种交变的电磁场,遇到金属网时,金属网会感应出同频率的电磁波,只是强度变小,因此在仍能听到笼中手机铃声,也解释了,也就解释了为什么吹风机对电视信号有影响。这样通过对物理知识重演再现与对比的方式,加深了学生对物理知识的理解,从而提高了教学质量。

 2运用全息理论,根据物理教材和学情选择合适的教学方法

 在进行物理教学时,物理教材中的安排的知识点难易程度不同,如果各个知识点都按照相同的教学方法去讲解,容易理解的知识点学生会掌握的相对熟练,而对于相对较难的知识点,就可能会导致学生对其似懂非懂,这样就会不利于学生的学习。这样物理教师在运用全息理论时,不要一味的按照一个教学方法进行讲解要注意对教学方法的改变,使学生能够熟练地掌握知识点。另外,每个学生对于知识点的掌握情况不同,有些学生可能掌握的好一些,有些学生掌握的差一些,因此物理教师要根据学情来选择教学方式,既要照顾那些掌握知识差的同学,也要让掌握较好的同学能够学到更多的知识。例如,在向同学讲解“测量”的知识点时,对与学生来说这个相对知识点相对容易,在日常生活中很容易接触到,因此教师在运用全息教学论时,可以先向学生对所要内容的主旨,主要思路进行讲解,然后对主要知识点进行仔细讲解,经过这样的讲解,学生会很容易对测量知识进行掌握。而在向学生讲解“光学规律”时,学生对其中的规律和容易混淆,如果物理教师还按照讲解“测量”方法向学生进行讲解,学生就很难掌握。因此,教师要改变教学方法,既要向学生进行理论讲解,也要带领学生对个规律进行实验,通过实验加深学生对光学规律的理解,使学生对知识点能够更好地掌握。3运用全息理论,根据知识内容和特点选择合适的评价方式在物理教学中,物理教师对学生的评价方式非常重要,有的评价方式会激发学生学习物理的知识的兴趣,而有的评价方式可能使学生受到打击,从而失去学习物理的兴趣。因此教师要合理的运用全息理论,并且根据知识内容和特点选择合适的评价方式,激发学生学习物理的兴趣。例如,在课堂上让学生回答问题时,学生回答对了要给与肯定的评价,而如果学生回答错了,要用积极的评价方式去评价,用全息理论去告诉他,其在探讨知识的过程中,没有选择正确的方式方法,让其用正确的方式再去进行探讨,这样既让学生知道了自己了不足,也对学生进行了鼓励学生,这样学生就会乐意去学习,从而大大地提高物理教学质量。

 二、结束语

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » 诺贝尔物理学奖:1901年至今

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情