如何正确选择GPU服务器?,第1张

选择GPU服务器时首先要考虑业务需求来选择适合的GPU型号。在HPC高性能计算中还需要根据精度来选择,比如有的高性能计算需要双精度,这时如果使用P40或者P4就不合适,只能使用V100或者P100;同时也会对显存容量有要求,比如石油或石化勘探类的计算应用对显存要求比较高;还有些对总线标准有要求,因此,十次方平台建议您选择GPU型号要先看业务需求。

当GPU型号选定后,再考虑用什么样GPU的服务器。这时我们需要考虑以下几种情况:

第一、 在边缘服务器上需要根据量来选择T4或者P4等相应的服务器,同时也要考虑服务器的使用场景,比如火车站卡口、机场卡口或者公安卡口等;在中心端做Inference时可能需要V100的服务器,需要考虑吞吐量以及使用场景、数量等。

第二、 需要考虑客户本身使用人群和IT运维能力,对于BAT这类大公司来说,他们自己的运营能力比较强,这时会选择通用的PCI-e服务器;而对于一些IT运维能力不那么强的客户,他们更关注数字以及数据标注等,我们称这类人为数据科学家,选择GPU服务器的标准也会有所不同。

第三、 需要考虑配套软件和服务的价值。

第四、要考虑整体GPU集群系统的成熟程度以及工程效率,比如像DGX这种GPU一体化的超级计算机,它有非常成熟的操作系统驱动Docker到其他部分都是固定且优化过的,这时效率就比较高。

一般来说,选GPU云服务器的话,尽量选大厂的会比较好点。因为大厂一般在产品性能和服务上都做得比较好,而且他们比较重视客户体验这一块。

你关注的火山引擎的GPU云服务器就很不错,性能稳定,用户口碑也很好。

作为业内人士,可以简单给你介绍一下。

GPU云服务器在普通云服务器上附加了GPU加速卡,在提供超强计算能力的同时,也兼备普通云服务器灵活发放,按需使用的特点,适用于AI训练、AI推理、科学计算、视频渲染等场景。

GPU云服务器提供与普通云服务器一样的使用和管理方式,例如结合私有网络、安全组、密钥对、负载均衡等服务实现丰富的业务架构,灵活便捷的购买并管理GPU云服务器。除此之外,火山引擎GPU云服务器还具备以下几个优势:

1、便捷管理:GPU 云服务器采用和云服务器ECS 一致的管理操作方式,无需重复登录,简单易用。清晰的显卡驱动的安装、部署指引,免去高学习成本。

2、安全防护:不同用户之间资源全面隔离,保障您的数据安全。同时,GPU 云服务器享有与云服务器ECS 同等的安全基础,对接云监控服务,完善的网络监控服务保障您的网络安全。

3、费用低廉:无需预先配备硬件资源,免除硬件更新带来的额外费用,降低基础设施建设成本。目前,GPU 云服务器已全面支持包年包月计费和按量计费等多种计费方式,您可以根据需要选择计费方式。

4、性能优越:GPU 云服务器具有高并行、高吞吐、低时延等特点,在科学计算中的性能表现显著优于传统架构,同时在图像处理等场景也有明显优势。

并且除普通GPU云服务器外,火山引擎还为您提供高性能计算GPU集群,在原有GPU型规格的基础上,加入RDMA网络,提供8个GPU卡、vCPU高达112核的计算规格,可以大幅提升网络性能,提高大规模集群加速比,可用于高性能计算、人工智能、机器学习等业务场景。

关键在费用方面,火山引擎可以灵活变更计费项规格,按需调整资源计费方式。

所以综合来说,火山引擎的GPU云服务器不论是产品性能还是售后服务、价格等方面,都是比较优秀的,值得购买和使用。

这个问题,对许多做AI的人来说,应该很重要。因为,显卡这么贵,都自购,显然不可能。

但是,回答量好少。而且最好的回答,竟然是讲amazonaws的,这对国内用户,有多大意义呢?

我来接地气的回答吧。简单一句话:我们有万能的淘宝啊!

说到GPU租用的选择。阿里、腾讯、华为、滴滴等,大公司云平台,高大上。但是,第一,非常昂贵。很多不提供按小时租用,动不动就是包月。几千大洋撒出去,还是心疼的。第二,遇到codingbug,你找谁去问呢,大厂的售后可不会看代码。第三,看配套。大厂的云服务,适用面广,很难为ai做特殊优化。别看ai炒的热,其实市场还小众的很。

国内外现在有几家专门做算力租赁的,vectorDash,vastai,易学智能,等。

比如,易学智能,国内厂家,GPU便宜、按小时租,并且预装了各种环境-Tensorflow、Pytorch、MXNet、Caffe等都有,还有很多公开数据集可免费用。服务没得说,技术小哥连bug都帮你找,我当时用着,真是上帝感觉。vectordash与vast,出身名门(斯坦福硅谷)。他们的价格,比大厂都要优惠很多。

最后,重复一遍结论:到淘宝,搜gpu租用,跟店家交流一下、再试用1-2小时,你就知道,好东西在哪里了。

1、Megalayer香港服务器

Megalayer专业提供美国/香港服务器和VPS等产品,其中包括独立服务器、站群服务器、显卡服务器和高防服务器等,均具有卓越的性能和稳定性。Megalayer还部署了新加坡和菲律宾等机房,致力于成为全球电信增值服务提供商。

Megalayer香港服务器机房位于香港沙田,拥有低延迟及优质网关,可高速连接内地及世界各地。Megalayer香港服务器采用国际/优化/全向带宽,国内外延迟较低,支持市面上最火的Windows和Linux等操作系统,其配置可按需扩展。

2、RAKsmart香港服务器

RAKsmart可以说是海外服务商老品牌了,拥有十几年的机房管理经验,专业提供独立服务器、高防服务器、站群服务器、大带宽服务器、VPS等产品,最近又推出了美国GPU服务器,性价比也比较高。

RAKsmart作为著名的服务商数据中心已经遍布美国、香港、韩国、日本、德国、韩国等地区,与CN2、中国联通、中国移动,以及HE、NTT、GTT、Telia、Cogent、Softbank、PCCW 等全球多家顶级运营商实现互联,以保证不同用户的高速访问。RAKsmart香港服务器出口T级带宽保证,可选DDOS防御功能,可有效提升网站安全,可选大陆优化/精品网/国际BGP/CN2线路,支持Windows和Linux等市面上主流的系统。

深度学习是机器学习的分支,是一种以人工神经网络为架构,对数据进行表征学习的算法。深度学习在搜索技术,数据挖掘,机器学习,机器翻译,自然语言处理等多个领域都取得了卓越的成果,可见其重要性

熟悉深度学习的人都知道,深度学习是需要训练的,所谓的训练就是在成千上万个变量中寻找最佳值的计算。这需要通过不断的尝试识别,而最终获得的数值并非是人工确定的数字,而是一种常态的公式。通过这种像素级的学习,不断总结规律,计算机就可以实现像人一样思考。因而,更擅长并行计算和高带宽的GPU,则成了大家关注的重点。

很多人认为深度学习GPU服务器配置跟普通服务器有些不一样,就像很多人认为做设计的机器一定很贵一样。其实只要显卡或者CPU满足深度学习的应用程序就可以进行深度学习。由于现在CPU的核心数量和架构相对于深度学习来说效率会比GPU低很多,所以大部分深度学习的服务器都是通过高端显卡来运算的。

这里谈谈关于深度学习GPU服务器如何选择,深度学习服务器的一些选购原则和建议:

1、电源:品质有保障,功率要足够,有30~40%冗余

稳定、稳定、还是稳定。一个好的电源能够保证主机再长时间运行不宕机和重启。可以想象一下,计算过程中突然重启,那么又要重来,除了降低效率,还影响心情。有些电源低负载使用的时候可能不出问题,一旦高负载运行的时候就容易出问题。选择电源的时候一定要选择功率有冗余品质过硬,不要功率刚刚好超出一点。

2、显卡:目前主流RTX3090,最新RTX4090也将上市

显卡在深度学习中起到很重要的作用,也是预算的一大头。预算有限,可以选择RTX3080 /RTX3090/RTX4090(上月刚发布,本月12日上市)。预算充足,可以选择专业深度学习卡Titan RTX/Tesla V100 /A6000/A100/H100(处于断供中)等等。

3、CPU:两家独大,在这要讲的是PC级和服务器级别处理器的定位

Intel的处理器至强Xeon、酷睿Core、赛扬Celeron、奔腾Pentium和凌动Atom5个系列,而至强是用于服务器端,目前市场上最常见的是酷睿。当下是第三代Xeon Scalable系列处理器,分为Platinum白金、Gold金牌、 Silver 银牌。

AMD处理器分为锐龙Ryzen、锐龙Ryzen Pro、锐龙线程撕裂者Ryzen Threadripper、霄龙EPYC,其中霄龙是服务器端的CPU,最常见的是锐龙。当下是第三代 EPYC(霄龙)处理器 ,AMD 第三代 EPYC 7003 系列最高 64核。

选择单路还是双路也是看软件,纯粹的使用GPU运算,其实CPU没有多大负载。考虑到更多的用途,当然CPU不能太差。主流的高性能多核多线程CPU即可。

4、内存:单根16G/32G/64G 可选,服务器级别内存有ECC功能,PC级内存没有,非常重要

内存32G起步,内存都是可以扩展的,所以够用就好,不够以后可以再加,买多了是浪费。

5、硬盘:固态硬盘和机械硬盘,通常系统盘追求速度用固态硬盘,数据盘强调存储量用机械盘

固态选择大品牌企业级,Nvme或者SATA协议区别不大,杂牌固态就不要考虑了,用着用着突然掉盘就不好了。

6、机箱平台:服务器级别建议选择超微主板平台,稳定性、可靠性是第一要求

预留足够的空间方便升级,比如现在使用单显卡,未来可能要加显卡等等;结构要合理,合理的空间更利于空气流动。最好是加几个散热效果好的机箱风扇辅助散热。温度也是导致不稳定的一个因素。

7、软硬件支持/解决方案:要有

应用方向:深度学习、量化计算、分子动力学、生物信息学、雷达信号处理、地震数据处理、光学自适应、转码解码、医学成像、图像处理、密码破解、数值分析、计算流体力学、计算机辅助设计等多个科研领域。

软件: Caffe, TensorFlow, Abinit, Amber, Gromacs, Lammps, NAMD, VMD, Materials Studio, Wien2K, Gaussian, Vasp, CFX, OpenFOAM, Abaqus, Ansys, LS-DYNA, Maple, Matlab, Blast, FFTW, Nastran等软件的安装、调试、优化、培训、维护等技术支持和服务。

————————————————

版权声明:本文为CSDN博主「Ai17316391579」的原创文章,遵循CC 40 BY-SA版权协议,转载请附上原文出处链接及本声明。

原文链接:https://blogcsdnnet/Ai17316391579/article/details/127533617

好的gpu云服务器有腾讯云服务器,阿里云服务器,优刻得,华为云,百度云服务器。

1、腾讯云服务器

腾讯云服务器依托腾讯云旗下的产品,稳定性和口碑毋庸置疑,而且这几年的力度也是比较诚意的,比如对于新客和老客的优惠和续费的力度还是有一些的。

2、阿里云服务器

毋庸置疑,阿里云依托进入云市场比较早,而且在早几年基于电商和全平台的营销,在用户数上面应该是目前国内第一的云服务商。但是这几年开始走下坡路,由于后续的续费优惠不足,新客力度不大,很多人也开始转其他服务商。

3、优刻得

UCLOUD优刻得服务商,国内科创版上市得首家云服务商,主营云服务器、云数据库、CDN、对象存储等主流云产品。

4、华为云

华为云服务商主导政企用户的,现在大众消费者也通过新客优惠吸引到我们。但是优惠力度并不是太大,如果我们有业务是基于华为云产品的,那选择是没有错的,如果我们常规云服务器也没有必要刻意的选择华为云。

5、百度云服务器

百度云服务器其实用的并不多,尤其是低配置的并不是太好用,高配的可能还可以。百度云产品用的多的还是他们的基于API的云服务器应用比较好。

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » 如何正确选择GPU服务器?

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情