“遥感在森林资源与规划方面的应用”论文资料

“遥感在森林资源与规划方面的应用”论文资料,第1张

森林资源调查中SPOT5遥感图像处理方法探讨

王照利、黄生、张敏中、马胜利

(国家林业局西北林业规划设计院,遥感计算中心,西安710048)

本文发表于<陕西林业科技>2005 No1 P27-29,55

摘要:

目前,多光谱、高空间分辨率的SPOT5卫星遥感数据被广泛应用到森林资源调查中。本文结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的处理和信息提取。探讨性地提出了适应于森林资源调查的SPOT5遥感数据处理方法。

关键词:SPOT5 遥感数据,森林资源调查、数据处理

DISCUSSION ON SPOT5 IMAGE DATA PROCESSING FOR FOREST INVENTORY

Wang Zhaoli, Huangsheng,Zhangminzhong,Ma Shengli

(Northwest Institute for Forest Inventory, Planning &Design, Xi’an China 710048)

Abstract: Now days, high spatial resolution and multispectral SPOT5 image data are widely applied in forest inventory in China Based on the characteristics of SPOT5 image and requirements of forest inventory, this paper discusses the processing procedures of ordering image data, ortho-rectification, image bands composition and image data fusion The complete steps of image processing for forest inventory are given

Key words: SPOT5 image data,forest inventory, data processing

前言

卫星遥感影像具有空间宏观性、视角广、多分辨率(光谱和空间)、多时相、周期性、信息量丰富等特点,所以卫星遥感影像既可以提供森林资源的宏观空间分布信息又能提供局部的详细信息以及随时间、空间变化的信息等[1]。目前在林业领域卫星遥感数据被广泛的应用于不同尺度层次的森林资源调查、资源监测、病虫害、火灾监测等方面。

2002年5月法国SPOT地球观测卫星系列之5号卫星(即SPOT5星)发射。SPOT5遥感数据的多光谱波段空间分辨率为10米(短波红外空间分辨率为20米),但全色波段空间分辨率达到25米。SPOT5遥感数据的高空间分辨率和多光谱分辨率为森林资源调查提供了丰富的、可靠的、高精度的基础数据源。从性价比分析,在其他高分辨率遥感数据目前比较昂贵的状况下,SPOT5遥感数据比较适宜应用于大面积的森林资源调查,可大幅度的森林调查的减少外业工作量、提高工作效率。在我国SPOT5卫星数据已被大量地应用于森林资源调查工作中,尤其,是在森林资源“二类”调查中被作基本的森林资源信息源提取各类信息。针对于将多光谱分辨率和高空间分辨率的SPOT5遥感数据应用于森林资源调查的数据处理技术和方法鲜有报道。本文总结工作实践,结合SPOT5遥感数据的特点,根据森林资源调查的需要,从遥感数据的订购、正射校正、波段组合、融合处理和数据变换处理等方面探讨了SPOT5数据的基本处理方法。

1.SPOT5卫星遥感数据特点

SPOT卫星系统采用线性阵列传感器和推扫式扫描技术,具有旋转式平面镜可以进行倾斜观察获得倾斜图像和立体像对。采用与太阳同步的近极地的椭圆形轨道,轨道高度约832Km,轨道倾角987o ,每天绕地球14圈多,重复覆盖周期26天[2]。由于有倾斜观测功能,使重复覆盖周期减少到2-3天。SPOT5卫星载有2台高分辨率几何成像仪(HRG)、1台高分辨率立体成像装置(HRS)和1台宽视域植被探测仪(VGT)。高分辨率几何成像仪的波段选择是总结了多年的研究成果,认为HRG的波段设置(见表1)足以取得辨别作物和植被类型的最佳效果。本文主要探讨HRG高空间分辨率数据的处理。

2.SPOT5数据的处理方法和过程

SPOT5数据处理工作流程:

21 遥感数据的订购

订购数据时,用户需向数据代理商提供购买区域的四个角的大地坐标或者数据的景号(PATH/ROW)。特别应该注意数据订购时间和用户拿到数据之间有时间差,间隔时间长短因用户的要求、天气、卫星重复覆盖周期而异。相对于其他卫星数据,比较有利的一面是SPOT5卫星装置有旋转式平面镜可以进行倾斜观察,用户可向代理商申请红色编程提前得到调查区域的遥感数据,但要支付编程费。对于遥感数据的时相、云量、入射角、阴影量、是否购买高空间分辨率的全色波段等用户根据自己具体的工作需要向代理商提出限制要求。

根据我们对SPOT5遥感数据的使用,对于森林资源调查,北方9,10月份和11月初的遥感影像比较适宜。代理商向用户提供经过处理的不同级别的影像产品,在森林资源调查中建议购买SPOT1A级产品,用户可根据自己的工作需要进行处理,同时也可减少费用。

22 基础数据准备

大比例尺地形图和高精度DEM是进行SPOT5遥感数据高精度正射校正必需的基础地理数据。建议购买1:10000地形图和1:25000数字高程模型(DEM)。

将1:1万地形图扫描,扫描分辨率设置为300DPI。将扫描好的地形图进行几何精纠正,纠正精度控制在03毫米内。从测绘部门购买的1:1万地形图为北京54坐标系3度分带高斯克吕格投影,而1:25万DEM为北京54坐标系6度分带投影。在数据准备时,将校正好的1:1万地形图通过换带转换转成和DEM一致的6度分带投影。

对于没有1:1万地形图的地区,建议使用差分GPS接收机采集地面控制点。

23几何正射校正

正射校正过程应用了法国SPOT公司发行的GEOIMAGE软件。GEOIMAGE软件有针对SPOT5卫星数据开发的SPOT5物理模型。模型模块自动读取DEM信息。SPOT 物理模型可读取卫星在获取遥感数据的瞬间状态参数,这些参数存贮在数据的头文件中[3]。卫星状态参数包括:卫星成像瞬间的经纬度、高度、倾角等。卫星状态参数能够帮助提高几何校正的精度。

以校正好的1:1万地形图为基准,在影像图上找出和地形图上地物相匹配的明显地物作为地面控制点。在进行正射校正时,应先进行全色波段数据校正,然后以校正好的全色波段数据为基准进行多光谱数据校正。以全色波段数据为基准校正多光谱波段就比较容易校正,且能提高两者的匹配精度。地面控制点应分布均匀,影像的边缘部分布要有控制点分布,同时在不同的高程范围最好都有控制点。地面控制点的数量因地形地貌的复杂程度而定,根据我们的经验,一景60KmX60Km的SPOT5数据,一般地势平缓的地区20个左右控制点即可达到满意的结果,在高山区25个左右控制点就可使正射校正精度满足要求。重采样方法采用双线性内插法。

24 辐射校正

用户购买的SPOT5的各级数据,数据提供商已经根据卫星的记录参数对遥感数据做了辐射校正,即消除了传感器自身引起的、大气辐射引起的辐射噪声。若果影像存在薄雾或地形高差较大引起的辐射误差情况,用户应进一步进行辐射校正处理。薄雾的简单消除原理是基于近红外波段不受大气辐射影响,清澈的水体或死阴影区的数值应为零。从各波段数据中减去近红外波段的水体或阴影的不为零值。地形起伏引起的辐射误差校正公式: f (x,y)=g(x,y)/cosa,g(x,y)为坡度为a的倾斜面上的地物影像;f (x,y)为校正后的影像。由于坡度因子参与校正所以需要DEM支持。

25 波段组合

根据SPOT5数据波谱特征(表1),各波段分别记录反映了植被的不同特征方面:B4(SWIR)短波红外反映植物和土壤的含水量,利于植被水分状况和长势分析;B3(NIR)近红外波段对植被类别、密度、生长力、病虫害等的变化敏感;B2(RED)红光波段对植被的覆盖度、植被的生长状况敏感;B1(VIS)可见光波段对植物的叶绿素和叶绿素浓度敏感。经过比较分析和实际应用发现SPOT5的B3、B4、B2波段组合对植被类型的识别要优于B3、B2和B1的组合。但由于B4波段的空间分辨率为20米,使B342组合对植被空间几何细节表达没有B321组合清晰,例如林缘界线信息表达方面B321要优于B342。

26 影像数据融合

对于购买有高空间分辨率全色波段数据的用户,进行数据融合是必不可少的。影像数据融合能够综合不同波段、不同空间分辨率数据(层)的特征,融合后的数据具有更丰富、更可靠的信息[4]。 根据影像数据融合的水平阶段,影像融合分为:像元级、特征级和决策级三个层次。为了最大限度的从SPOT5遥感数据中提取森林植被信息,应进行像元级的数据融合,将25米的全色波段和10米多光谱数据进行融合。融合得到的新数据既具有全色波段数据的高空间分辨率特征又具有多光谱特征。

像元级数据融合的方法多种多样,根据数据融合的目的,即最大限度的突显森林植被信息,应选取B4、B3、B2和PAN波段,根据我们的试验Brovey 融合算法方法比较理想:

27遥感影像地图

将融合好的数据按Rfused、Gfused、Bfused组合,叠加上行政界线、公里格网、坐标、比例尺等辅助信息,按1:1万地形图分幅生成1:1万纸质图作为外业手图。

3 结果和讨论

31 几何精度

利用SPOT5物理模型,采用1:1万地形图和25万DEM ,经过正射校正处理,可使影像的几何精度控制在2个像元内(<10米),达到1:1万制图标准要求。为以遥感影像为基础信息源提取林分调查因子、区划林班界线生成大比例尺的林相图、森林分布图提供了几何精度保障。

32 波段选择

对于没有全色波段的情况,SPOT5数据的B342组合有利于森林植被类型的识别。在应用遥感技术进行森林资源调查区划中,林分类型信息提取是最为重要的环节,所以B342波段组合是小班区划和外业手图的最佳组合。

33 融合效果

融合数据技术使SPOT5遥感影像既具有全色波段的高空间分辨率又拥有多光谱数据的光谱分辨率,丰富了遥感影像的信息量。采用Brovey算法使SPOT5遥感影像从色彩、纹理等方面增强了影像的可判读性,提高了小班因子正判率和林分小班的区划精度。

参考文献

1.周成虎,杨晓梅,骆剑承等《遥感影像地学理解与分析》,科学出版社,北京,2001,3-4

2.赵英时《遥感应用分析原理与方法》,科学出版社,北京,200188-90

3.北京视宝卫星图像有限公司《专业制图工作室GEOIMAGE用户指南》,2004,68-70

4.Christine Pohl Geometric Aspects of Multisensor Image Fusion for Topographic Map Updating in The Humid Tropics, ITC Publication, 1996,51-52

21世纪遥感与GIS的发展

来源: 李德仁 时间: 2005-08-11-23:09 浏览次数: 79

21世纪遥感与GIS的发展

李德仁

(武汉大学测绘遥感信息工程国家重点实验室,武汉市珞瑜路129号,430079)

摘要:在20世纪,人类的一大进步是实现了太空对地观测,即可以从空中和太空对人类赖以生存的地球通过非接触传感器的遥感进行观测,并将所得到的数据和信息存储在计算机网络上,为人类社会的可持续发展服务。在短短的30年中,遥感和GIS作为一个边缘交叉学科已发展成为一门科学、技术和经济实体。本文深入地论述了21世纪中遥感的6大发展趋势和GIS的5个发展特征。

关键词:发展趋势;航空航天遥感;地理信息系统;对地观测

中图法分类号:P208;P2379

随着计算机技术、空间技术和信息技术的发展,人类实现了从空中和太空来观测和感知人类赖以生存的地球的理想,并能将所感知到的结果通过计算机网络在全球流通,为人类的生存、繁荣和可持续发展服务。在20世纪后半叶,遥感和地理信息系统作为一门新兴的科学和技术,迅速地成长起来。

1 遥感技术的主要发展趋势

11 航空航天遥感传感器数据获取技术趋向三多(多平台、多传感器、多角度)和三高(高空间分辨率、高光谱分辨率和高时相分辨率)

从空中和太空观测地球获取影像是20世纪的重大成果之一,短短几十年,遥感数据获取手段迅猛发展。遥感平台有地球同步轨道卫星(35000km)、太阳同步卫星(600—1000km)、太空飞船(200—300km)、航天飞机(240—350km)、探空火箭(200—1000km),并且还有高、中、低空飞机、升空气球、无人飞机等;传感器有框幅式光学相机、缝隙、全景相机、光机扫描仪、光电扫描仪、CCD线阵、面阵扫描仪、微波散射计雷达测高仪、激光扫描仪和合成孔径雷达等,它们几乎覆盖了可透过大气窗口的所有电磁波段。三行CCD阵列可以同时得到3个角度的扫描成像,EOS Terra卫星上的MISR可同时从9个角度对地成像。

卫星遥感的空间分辨率从Ikonos Ⅱ的1m,进一步提高到Quckbird(快鸟)的062m,高光谱分辨率已达到5—6nm,500—600个波段。在轨的美国EO-1高光谱遥感卫星,具有220个波段,EOS AM-1(Terra)和EOS PM-1(Aqua)卫星上的MODIS具有36个波段的中等分辨率成像光谱仪。时间分辨率的提高主要依赖于小卫星技术的发展,通过发射地球同步轨道卫星和合理分布的小卫星星座,以及传感器的大角度倾斜,可以以1—3d的周期获得感兴趣地区的遥感影像。由于具有全天候、全天时的特点,以及用INSAR和D-INSAR,特别是双天线INSAR进行高精度三位地形及其变化测定的可能性,SAR雷达卫星为全世界各国所普遍关注。例如,美国宇航局的长远计划是要发射一系列太阳同步和地球同步的长波SAR,美国国防部则要发射一系列短波SAR,实现干涉重访问间隔为8d、3d和1d,空间分辨率分别为20m、5m和2m。我国在机载和星载SAR传感器及其应用研究方面正在形成体系。“十五”期间,我国将全方位地推进遥感数据获取的手段,形成自主的高分辨率资源卫星、雷达卫星、测图卫星和对环境与灾害进行实时监测的小卫星群。

12 航空航天遥感对地定位趋向于不依赖地面控制

确定影像目标的实地位置(三维坐标),解决影像目标在哪儿(Where)是摄影测量与遥感的主要任务之一。在已成功用于生产的全自动化GPS空中三角测量的基础上,利用DGPS和INS惯性导航系统的组合,可形成航空/航天影像传感器的位置与姿态的自动测量和稳定装置(POS),从而可实现定点摄影成像和无地面控制的高精度对地直接定位。在航空摄影条件下的精度可达到dm级,在卫星遥感的条件下,其精度可达到m级。该技术的推广应用,将改变目前摄影测量和遥感的作业流程,从而实现实时测图和实时数据库更新。若与高精度激光扫描仪集成,可实现实时三维测量(LIDAR),自动生成数字表面模型(DSM),并可推算出数字高程模型(DEM)。

美国NASA在1994年和1997年两次将航天激光测高仪(SLA)安装在航天飞机上,企图建立基于SLA的全球控制点数据库,激光点大小为100m,间隔为750m,每秒10个脉冲;随后又提出了地学激光测高系统(GLAS)计划,已于2002年12月19日将该卫星IICESat(cloud and land elevation satellite)发射上天。该卫星装有激光测距系统、GPS接收机和恒星跟踪姿态测定系统。GLAS发射近红外光(1064nm)和可见绿光(532nm)的短脉冲(4ns)。激光脉冲频率为40次/s,激光点大小实地为70m,间隔为170m,其高程精度要明显高于SRTM,可望达到m级。他们的下一步计划是要在2015年之前使星载LIDAR的激光测高精度达到dm和cm级。

法国利用设在全球的54个站点向卫星发射信号,通过测定多普勒频移,以精确解求卫星的空间坐标,具有极高的精度。测定距地球1300km的Topex/Poseidon卫星的高度,精度达到±3cm。用来测定SPOT 4卫星的轨道,3个坐标方向达到±5cm精度,对于SPOT 5和Envisat,可望达到±1m精度。若忽略SPOT 5传感器的角元素,直接进行无地面控制的正射像片制作,精度可达到±15m,完全可以满足国家安全和西部开发的需求。

13 摄影测量与遥感数据的计算机处理更趋向自动化和智能化

从影像数据中自动提取地物目标,解决它的属性和语义(What)是摄影测量与遥感的另一大任务。在已取得影像匹配成果的基础上,影像目标的自动识别技术主要集中在影像融合技术,基于统计和基于结构的目标识别与分类,处理的对象既包括高分辨率影像,也更加注重高光谱影像。随着遥感数据量的增大,数据融合和信息融合技术逐渐成熟。压缩倍率高、速度快的影像数据压缩方法也已商业化。我国学者在这些方面取得了不少可喜的成果。

14 利用多时像影像数据自动发现地表覆盖的变化趋向实时化

利用遥感影像自动进行变化监测(What change)关系到我国的经济建设和国防建设。过去人工方法投入大,周期长。随着各类空间数据库的建立和大量新的影像数据源的出现,实时自动化监测已成为研究的一个热点。

自动变化监测研究包括利用新旧影像(DOM)的对比、新影像与旧数字地图(DLS)的对比来自动发现变化和更新数据库。目前的变化监测是先将新影像与旧影像(或数字地图)进行配准,然后再提取变化目标,这在精度、速度与自动化处理方面都有不足之处。笔者提出了把配准与变化监测同步的整体处理[1]。最理想的方法是将影像目标三维重建与变化监测一起进行,实现三维变化监测和自动更新。进一步的发展则是利用智能传感器,将数据处理在轨完成,发送回来的直接为信息,而不一定为影像数据。

15 摄影测量与遥感在构建“数字地球”、“数字中国”、“数字省市”和“数字文化遗产”中正在发挥愈来愈大的作用

“数字地球”概念是在全球信息化浪潮推进下形成的。1999年12月在北京成功地召开了第一届国际“数字地球”大会后,我国正积极推进“数字中国”和“数字省市”的建设,2001年国家测绘局完成了构建“数字中国”地理空间基础框架的总体战略研究。在已完成1∶100万和1∶25万全国空间数据库的基础上,2001年全国各省市测绘局开始1∶5万空间数据库的建库工作。在这个数据量达11TB的巨型数据库中,摄影测量与遥感将用来建设DOM(数字正射影像)、DEM(数字高程模型)、DLG(数字线划图)和CP(控制点数据库)。如果要建立全国1m分辨率影像数据库,其数据量将达到60TB。如果整个“数字地球”均达到1m分辨率,其数据量之大可想而知。本世纪内可望建成这一分辨率的数字地球。

“数字文化遗产”是目前联合国和许多国家关心的一个问题,涉及到近景成像、计算机视觉和虚拟现实技术。在近景成像和近景三位量测方面,有室内各种三维激光扫描与成像仪器,还可以直接由视频摄像机的系列图像获取目标场三维重建信息。它们所获取的数据经过计算机自动处理后,可以在虚拟现实技术支持下形成文化遗迹的三维仿真,而且可以按照时间序列,将历史文化在时间隧道中再现,对文化遗产保护、复原与研究具有重要意义。

16 全定量化遥感方法将走向实用

从遥感科学的本质讲,通过对地球表层(包括岩石圈、水圈、大气圈和生物圈4大圈层)的遥感,其目的是为了获得有关地物目标的几何与物理特性,所以需要通过全定量化遥感方法进行反演。几何方程式是有显式表示的数学方程,而物理方程一直是隐式。目前的遥感解译与目标识别并没有通过物理方程反演,而是采用了基于灰度或加上一定知识的统计、结构和纹理的影像分析方法。但随着对成像机理、地物波谱反射特征、大气模型、气溶胶的研究深入和数据积累,多角度、多传感器、高光谱及雷达卫星遥感技术的成熟,相信在21世纪,估计几何与物理方程式的全定量化遥感方法将逐步由理论研究走向实用化,遥感基础理论研究将迈上新的台阶。只有实现了遥感定量化,才可能真正实现自动化和实时化。

2 GIS技术的主要发展趋势

21 空间数据库趋向图形、影像和DEM三库一体化和面向对象[2]

GIS发展曾经历过栅格、矢量两个不同数据结构发展阶段,目前随着高分辨率卫星遥感数据的飞快增长和数字地球、数码城市的需求,形成了面向对象的数据模型和三库(图形矢量库、影像栅格库和DEM格网库)一体化的数据结构。这样的数据库结构使GIS的发展更加趋向自然化、逼真化,更加贴近用户。以面向应用的GIS软件为前台,以大型关系数据库(Oracle 8i,9i等)为后台数据库管理,成为当前GIS技术的主流趋势。

22 空间数据表达趋向多比例尺、多尺度、动态多位和实时三维可视化

在传统的GIS中,空间数据是以二维形式存储并挂接相应的属性数据。目前,空间数据表达的趋势是基于金字塔和LOD(level of detail)技术的多比例尺空间数据库,在不同尺度表示时可自动显示出相应比例尺或相应分辨率的数据,多比例尺数据集的跨度要比传统地图的比例尺大,在显示不同比例尺数据时,可采用LOD或地图综合技术。真三维GIS的空间数据要存储三维坐标。动态GIS在土地变更调查、土地覆盖变化监测中已有较好的应用,真四维的时空GIS将有望从理论研究转入实用阶段。基于三库一体化的时空3D可视化技术发展势头迅猛,已能再PC机上实现GIS环境下的三维建筑物室外室内漫游、信息查询、空间分析、剖面分析和阴影分析等,基于虚拟现实技术的真三维GIS将使人们在现实空间外,可以同时拥有一个Cyber空间。

23 空间分析和辅助决策智能化需要利用数据挖掘方法从空间数据库和属性数据库中发现更多的有用知识

GIS是以应用导向的空间信息技术,空间分析与辅助决策支持是GIS的高水平应用,它需要基于知识的智能系统。知识的获取是专家系统中最困难的任务。随着各种类型数据库的建立,从数据库中挖掘知识成为当今计算机界一个非常引人注目的课题。从GIS空间数据库中发现的知识可以有效的支持遥感图像解译,以解决“同物异谱”和“同谱异物”的问题。反过来,从属性数据库中挖掘的知识又具有优化资源配置等一些列空间分析的功能[3]。尽管数据挖掘和知识发现这一命题仍处于理论研究阶段,但随着数据库的快速增大和对数据挖掘工具的深入研究,其应用前景是不可估量的。

24 通过Web服务器和WAP服务器的互联网和移动GIS将推进联邦数据库和互操作的研究及地学信息服务事业

随着计算机通讯网络(包括有线和无线网)的大容量和高速化,GIS已成为在网络上的分布式异构系统。许多不同单位、不同组织维护管理的既独立又互联互用的联邦数据库,将可提供全社会各行各业的应用需要。因此,联邦数据库和互操作(federal databases & interoperability)问题成为当前国际GIS联合研究的一个热点。互操作意味着数据库中数据的直接共享,GIS规律功能模块的互操作与共享,以及多点之间的相同工作,这方面的研究已显示出明显的成效。未来的GIS用户将可能在网络上缴纳为其需要所选用数据和软件功能模块的使用费,而不必购买这个数据库和整套的GIS软硬件,这些成果产生的直接效果是GIS应用将走向地学信息服务。

目前已兴起的LBS和MLS,即基于位置的服务和移动定位服务,突出地反映了这种变化趋势。它引起的革命性变化使GIS将走出研究院所和政府机关,成为全社会人人具备的信息服务工具。我国目前已有2亿个手机用户,若每人每月为MLS支付10元费用,全国一年的产值将达到240亿。可以预测在不久的将来,地学信息将能随时随地为任何人和任何事情进行4A服务(geo-in-formation for anyone and anything at anywhere and anytime)。

25 地理信息科学的研究有望在本世纪形成较完整的理论框架体系

笔者曾扼要地叙述了地球空间信息科学的7大理论问题[4]:(1)地球空间信息的基准,包括几何基准、物理基准和时间基准;(2)地球空间信息标准,包括空间数据采集、存储与交换标准、空间数据精度与质量标准、空间信息的分类与代码标准、空间信息的安全、保密及技术服务标准以及元数据标准等;(3)地球空间信息的时空变化理论,包括时空变化发现的方法和对时空变化特征的和规律的研究;(4)地球空间信息的认知,主要通过各目标各要素的位置、结构形态、相互关联等从静态上的形态分析、发生上的成因分析、动态上的过程分析、演化上的力学分析以及时态上的演化分析达到对地球空间的客观认知;(5)地球空间信息的不确定性,包括类型的不确定性、空间位置的不确定性、空间关系的不确定性、逻辑的不一致性和信息的不完备性;(6)地球空间信息的解译与反演,包括定性解译和定量反演,贯穿在信息获取、信息处理和认知过程中;(7)地球空间信息的表达与可视化,涉及到空间数据库多分辨率表示、数字地图自动综合、图形可视化、动态仿真和虚拟现实等。目前,这些方面的研究对建立完备的理论尚嫌不足,需要在今后加强这方面的基础研究。

关于遥感与GIS的集成,涉及到GPS和通信技术的集成,本文未作具体讨论,其具体内容可参见文献[4—6]。

3 结语

遥感与GIS在20世纪出现,在21世纪不仅将形成自身的理论体系和技术体系,而且将形成天地一体化的空间信息服务产业,为国民经济建设、国家安全、社会可持续发展和提高人民生活质量做出愈来愈大的贡献。

参考文献:

[1] Li D R, Sui H G Automatic Change Detection of Geospatial Data from Imagery The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2002,34(II):245—251

[2] 龚健雅 地理信息系统基础 北京:科学出版社,2001

[3] 邸凯昌 空间数据发掘与知识发现(第一版) 武汉:武汉大学出版社,2000 182

[4] 李德仁,关泽群 空间信息系统的集成与实现(第一版) 武汉:武汉测绘科技大学出版社,2000 244

[5] 李德仁,李清泉 论地球空间信息技术与通信技术的集成 武汉大学学报(信息科学版),2001,26(1):1—7

[6] 李德

主要是为船舶,汽车,飞机等运动物体进行定位导航。例如:

1船舶远洋导航和进港引水 2飞机航路引导和进场降落 3汽车自主导航 4地面车辆跟踪和城市智能交通管理 5紧急救生 6个人旅游及野外探险 7个人通讯终端(与手机,PDA,电子地图等集成一体) 1电力,邮电,通讯等网络的时间同步 2准确时间的授入 3准确频率的授入 1各种等级的大地测量,控制测量 2道路和各种线路放样 3水下地形测量 4地壳形变测量,大坝和大型建筑物变形监测 5GIS应用 6工程机械(轮胎吊,推土机等)控制 7精细农业

GPS首次出现在军事应用

1989年,一群认真专注的工程师和一个伟大的产品构想,造就了今日全球卫星定位导航系统的领导品牌GARMIN—兼具最佳的销售成绩与专业技术。由制造当初在波斯湾战争中被联军采用的第一台手持GPS,到现今成为GPS 的第一品牌,GARMIN的产品以更优良的功能和用途远远超越传统GPS接收器,并为GPS立下一崭新的里程碑。 为了缓解当时“沙漠风暴”行动时军用GPS接收装置短缺的问题,美军考虑购买民用GPS接收装置。民用接收装置的导航功能和军用装置完全一样,只不过不能识别军用加密信号而已。因此,到了“沙漠盾牌”军事行动的时候,美国国防部就提前购买了数千套民用GPS接收装置装备各参战部队,占到了所有的5300套接收装置的85%。

GPS在道路工程中的应用

GPS在道路工程中的应用,目前主要是用于建立各种道路工程控制网及测定航测外控点等。随着高等级公路的迅速发展,对勘测技术提出了更高的要求,由于线路长,已知点少,因此,用常规测量手段不仅布网困难,而且难以满足高精度的要求。目前,国内已逐步采用GPS技术建立线路首级高精度控制网,然后用常规方法布设导线加密。实践证明,在几十公里范围内的点位误差只有2厘米左右,达到了常规方法难以实现的精度,同时也大大提前了工期。GPS技术也同样应用于特大桥梁的控制测量中。由于无需通视,可构成较强的网形,提高点位精度,同时对检测常规测量的支点也非常有效。GPS技术在隧道测量中也具有广泛的应用前景,GPS测量无需通视,减少了常规方法的中间环节,因此,速度快、精度高,具有明显的经济和社会效益。 GPS在个人定位中的应用 国内首款语音彩信GPS定位器-- 昱读全资科技语音彩信GPS定位器为列,它内置全国的地图数 语音彩信gps定位器

据,无需后 台支持,结合了GPS全球定位系统、GSM通信技术、嵌入式语音播报技术、GIS技术、GIS搜索引擎、图像处理技术和图像传输技术,直接回复终端中文地址、彩信、或语音播报地理位置

GPS在汽车导航和交通管理中的应用

三维导航是GPS的首要功能,飞机、轮船、地面车辆以及步行者都可以利用GPS导航器进行导航。汽车导航系统是在全球定位系统GPS基础上发展起来的一门新 GPS应用

型技术。汽车导航系统由GPS导航、自律导航、微处理机、车速传感器、陀螺传感器、CD-ROM驱动器、LCD显示器组成。GPS导航系统与电子地图、无线电通信网络、计算机车辆管理信息系统相结合,可以实现车辆跟踪和交通管理等许多功能。

GPS在长途客运车辆管理中的应用(举例)

以国内首套专业的GPS长途客运车辆管理系统——它就是结合了卫星定位技术、GPRS/CDMA通讯业务、GIS技术、图像采集技术、计算机网络和数据库等技术,在客运公司建立一个总控(C/S结构和B/S结构相结合),其它设为分控,公安部门和运管部门等各部门建立专控的中心系统,系统由控制中心系统、无线通信平台(GPRS/CDMA)、全球卫星定位系统(GPS)、车载设备四部分组成一个全天候、全范围的驾驶员管理和车辆跟踪的综合平台;系统可对注册车辆实施动态跟踪、监控、拍照、行车记录、管理、数据分析等功能,监控车辆可以在电子地图上显示出来,并保存车辆运行轨迹数据;操作终端可任意选择服务器内部局域网或国际互联网对中心进行访问并可通过IE浏览器提供网上综合客车管理数据分析控制系统(B/S结构);

GPS技术在导航仪中的应用举例

国际领先GPS导航仪品牌:Ahada(艾航达)――源自美国硅谷,现已登录中国! 产品核心功能: 1) 地图查询 ◎可以在操作终端上搜索你要去的目的地位置。 ◎可以记录你常要去的地方的位置信息,并保留下来,也和可以和别人共享这些位置信息。 ◎模糊的查询你附件或某个位置附近的如加油站,宾馆、取款机等信息, 2) 路线规划 ◎GPS 导航系统会根据你设定的起始点和目的地,自动规划一条线路。 ◎规划线路可以设定是否要经过某些途径点。 ◎规划线路可以设定是否避开高速等功能。 3) 自动导航 ◎语音导航: ◎画面导航: ◎重新规划线路:

编辑本段引GPS种类

GPS卫星接收机种类很多,根据型号分为测地型、全站型、定时型、手持型、集成型;根据用途分为车载式、船载式、机载式、星载式、弹载式。 421 按接收机的用途分类 1 导航型接收机 此类型接收机主要用于运动载体的导航,它可以实时给出载体的位置和速度。这类接收机一般采用C/A码伪距测量,单点实时定位精度较低,一般为±10m,有SA影响时为±100m。 这类接收机价格便宜,应用广泛。根据应用领域的不同,此类接收机还可以进一步分为: 车载型——用于车辆导航定位; 航海型——用于船舶导航定位; 航空型——用于飞机导航定位。由于飞机运行速度快,因此,在航空上用的接收机要求能适应高速运动。 星载型——用于卫星的导航定位。由于卫星的速度高达7km/s以上,因此对接收机的要求更高。 2 测地型接收机 测地型接收机主要用于精密大地测量和精密工程测量。这类仪器主要采用载波相位观测值进行相对定位,定位精度高。仪器结构复杂,价格较贵。 3 授时型接收机 这类接收机主要利用GPS卫星提供的高精度时间标准进行授时,常用于天文台及无线电通讯中时间同步。 422 按接收机的载波频率分类 单频接收机 单频接收机只能接收L1载波信号,测定载波相位观测值进行定位。由于不能有效消除电离层延迟影响,单频接收机只适用于短基线(<15km)的精密定位。 双频接收机 双频接收机可以同时接收L1,L2载波信号。利用双频对电离层延迟的不一样,可以消除电离层对电磁波信号的延迟的影响,因此双频接收机可用于长达几千公里的精密定位。 423 按接收机通道数分类 GPS接收机能同时接收多颗GPS卫星的信号,为了分离接收到的不同卫星的信号,以实现对卫星信号的跟踪、处理和量测,具有这样功能的器件称为天线信号通道。根据接收机所具有的通道种类可分为: 多通道接收机 序贯通道接收机 多路多用通道接收机 424 按接收机工作原理分类 码相关型接收机 码相关型接收机是利用码相关技术得到伪距观测值。 平方型接收机 平方型接收机是利用载波信号的平方技术去掉调制信号,来恢复完整的载波信号,通过相位计测定接收机内产生的载波信号与接收到的载波信号之间的相位差,测定伪距观测值。 混合型接收机 这种仪器是综合上述两种接收机的优点,既可以得到码相位伪距,也可以得到载波相位观测值。 干涉型接收机 这种接收机是将GPS卫星作为射电源,采用干涉测量方法,测定两个测站间距离。 经过20余年的实践证明,GPS系统是一个高精度、全天候和全球性的无线电导航、定位和定时的多功能系统。 GPS技术已经发展成为多领域、多模式、多用途、多机型的国际性高新技术产业。

测地型GPS

测地型接收机主要用于精密大地测量和精密工程测量。这类仪器主要采用载波相位观测值 进行相对定位,定位精度高。仪器结构复杂,价格较贵。根据使用用途和精度,又分为静态(单频)接收机和动态(双频)接收机即RTK 目前,在GPS技术开发和实际应用方面,国际上较为知名的生产厂商有美国Trimble(天宝)导航公司、瑞士Leica Geosystems(徕卡测量系统)、日本TOPCON(拓普康)公司,国内厂家主要有南方测绘、中海达、华测、科力达等。 南方测绘的GPS接收机产品主要有RTK S82、S86、S82-1、S86-T、蓝牙静态GPS等。其中S82-T采用一体化设计,集成GPS天线、UHF数据链、BD970、天宝嵌入式定位技术、即插即用式U盘设计、蓝牙通讯模块、锂电池,其RTK定位精度:平面±(1cm+1ppm),垂直±(2cm+1ppm);静态后处理精度:平面±(25mm+1ppm),垂直±(5mm+1ppm);单机定位精度:15m(CEP);码差分定位精度:045m(CEP)。 中海达测绘的GPS接收机产品主要包括静态一体化接收机HD-8200G和GD-8200X,其中HD-8200G配备有无线遥控器,可远距离查看卫星状况等关键信息,8200X配备有语音导航功能,可通过面板直接设置静态采集关键参数卫星高度角和采样间隔。RTK产品主要有珠峰HD-5800、V8 CORS RTK、V8 GNSS RTK。RTK作业精度:静态后处理精度: 平面:±25mm+1ppm,高程:±50mm+1ppm,RTK定位精度: 平面:±1cm+1ppm,高程:±2cm+1ppm,码差分定位精度:045m(CEP),单机定位精度:15m(CEP)。V8具有八大创新技术。 华测的GPS接收机产品主要有X60CORS、X20单频接收机、X90一体化RTK、X60双频接收机等。国内通过中华人民共和国制造计量器具许可证获得的精度最高的产品,其中,X90为28通道双频GPS接收机,集成双频GPS接收机、双频测量型GPS天线、UHF无线电、进口蓝牙模块和电池,动态精度:水平10mm+1ppm,垂直20mm+1ppm;静态精度:水平5mm+1ppm,垂直10mm+1ppm,能达到10-30公里的作用范围(因实际地域情况有所差别),既可以承受从3米高度跌落到坚硬的地面,也可浸入水下1米深处进行测量。X90具有静态、快速静态、RTK、PPK、码差分等多种测量模式,精度范围为毫米级到亚米级。 而且可与天宝,徕卡等主流品牌联合作业。 科力达GPS是一个新兴品牌,主要型号有风云K9和静态K7。科力达风云K9双频RTK GPS接收机带电池重量08kg,为国内最轻一款GPS接收机,采用密封橡胶圈设计,防尘防水等级达到IP67。坚固轻便的外壳,抗2米自然跌落,2W低功耗,数据更新率高达20Hz,信号重捕获:05~10秒。静态精度:平面±3mm+1ppm,高程±5mm+1ppm;RTK精度:平面±1cm+1ppm,高程±2cm+1ppm;码差分定位精度:045m(CEP);单机定位精度:15m(CEP)。采用PAC和Vision 相关技术,能够有效消除来自天线附近或强多路径干扰环境下的多路径干扰信号,具有高精度、高可靠性和高数据采样率的特点,经升级可支持俄罗斯的GLONASS卫星定位系统,从而实现GPS+GLONASS双星系统定位能力。

车载GPS

当通过硬件和软件做成GPS定位终端用于车辆定位的时候,称为车载GPS,但光有定位还不行,还要把这个定位信息传到报警中心或者车载GPS持有人那里,我们称为第三方。所以GPS定位系统中还包含了GSM网络通讯(手机通讯),通过GSM网络用短信的方式把卫星定位信息发送到第三方。通过微机解读短信电文,在电子地图上显示车辆位置。这样就实现了车载GPS定位。 与此同时,在车上安装相应的探测传感器,利用车载GPS定位的GSM网络通讯功能,同样能把防盗报警信息发送到第三方,或者把这个报警电话、短信直接发送到车主手机上,完成车载GPS防盗报警。这里可以看出,车载GPS定位的GSM网络部分实际上是一个智能手机,可以和第三方互相通讯,还可以把车辆被抢,司机被劫、被绑架等信息发送到第三方。 所以说车载GPS定位是定位、防盗、防劫的。 目前市场销售很广阔,经常被大家提及的是一般的民用的导航gps,这样的gps主要是给汽车定位,导航。目前越来越发达的道路,错综复杂的高架桥给驾驶者越来越难分辨道路。导航车载gps的确是给驾驶者带来了极大的方便! 而且现在的导航gps还具有提前预警电子眼、查询全国旅游景点、酒店等服务。的确是旅游带来了极大的方便!以达伽马鹰隼G808为例,以上功能均可以自助实现,远程控制和查询!

类似车载GPS

类似车载GPS终端的还有定位手机、个人定位器等。GPS卫星定位由于要通过第三方定位服务,所以要交纳不等的月/年服务费。 目前所有的GPS定位终端,都没有导航功能。因为再需要增加硬件和软件,成本提高。 我们在电视里看到的车载GPS广告,和上述的车载GPS完全是两回事。它是一种GPS导航产品,当需要导航时,首先定位,也就是导航的起点,这与真正的GPS定位是不同的,它不能把定位信息传送到第三方和持有人那里,因为导航仪中缺少手机功能。比如你把导航仪放在车里,你朋友把车借开走了,导航仪不能发信息给你,那你就无法查找车辆位置。所以导航仪是不能定位的。 你说我买的是导航手机该行了吧,你想想,你把导航手机放在车上,现在车被盗了,那个手机会自己给你或第三方打电话发短信吗?它是需要人来操作的。所以说目前的导航终端都没有定位功能。 导航终端可以导航路线,让你在陌生的地方不迷路,划出路线让你到达目的地,告诉你自己当前位置,和周边的设施等等。 中国目前在GPS应该上取得了很大的市场其中有很多公司是导航的但是也有在GPS行业做定位管理的。 各种GPS/GIS/GSM/GPRS车辆监控系统软件、GSM和GPRS移动智能车载终端、系统的二次开发车辆监控系统整体搭建方案系统广泛应用于公安,医疗,消防,交通,物流等领域。该方案基于NXP的PNX1090 Nexperia移动多媒体处理器硬件和由NXP与合作伙伴ALK Technologies联合开发的软件。NXP声称,该方案提供了设计师搭建一个带导航能力的低成本、多媒体功能丰富的便携式媒体播放器所需的一切,这些多媒体功能包括:MP3播放、标准和高清晰度视频播放和录制、FM收音、图像存储和游戏。NXP以其运行于PNX0190上的swGPS Personal软件来实现GPS计算,从而取代了一个GPS基带处理器,进而降低了材料清单(BOM)成本并支持现场升级。 跟随GPS 的一系列关联的应用都设计到数学和算法,和GIS系统,地图投影,坐标系转换! 由于卫星运行轨道、卫星时钟存在误差,大气对流层、电离层对信号的影响,以及人为的SA保护政策,使得民用GPS的定位精度只有100米。为提高定位精度,普遍采用差分GPS(DGPS)技术,建立基准站(差分台)进行GPS观测,利用已知的基准站精确坐标,与观测值进行比较,从而得出一修正数,并对外发布。接收机收到该修正数后,与自身的观测值进行比较,消去大部分误差,得到一个比较准确的位置。实验表明,利用差分GPS(DGPS),定位精度可提高到5米。

GPS预警器

GPS预警器是通过GPS卫星在GPS预警器中设定坐标来完成的,比如遇到一个电子眼,然后通过相关设备在电子眼的正下方设立一个坐标,这样,使得装上这个坐标点数据的预警器到达这个点时,在达到坐标点的前300米左右就会开始预警,告诉车主前面有电子眼测速,不能超速驾驶,这样就起到一个预警作用。这样的准确率跟数据点的多少是有关系的,主要就是利用卫星的定位来实现了。 这种利用电子眼的经纬度信息进行预警的方式,关键在于电子眼数据的及时更新这种产品的缺点在于不能测到流动性测速,目前有些反测速型的GPS导航仪,如凯旋智能预警GPS,配有反测速雷达机系统,GPS预警和反测速雷达机预警,两套系统同时工作,能够全面的实现电子眼预警的功能

GPStar智能GPS系统

主要由两大部分组成,即:本地的监控中心软件管理平台和远程的GPS智能车载终端。远程的GPS智能车载终端将车辆所处的位置信息、运行速度、运行轨迹等数据传回到监控中心,监控中心接收到这些数据后,会立即进行分析、比对等处理,并将处理结果以正常信息或者报警信息两类形式显示给管理员,由管理员决定是否要对目标车辆采取必要措施。

编辑本段GPS在新世纪的发展

进入21世纪,全球定位系统(GPS)在各方面的应用都将加强和发展。本文对GPS走向21世纪时的最新发展情况,特别是当前国际GPS服务(1GS)的产品内容、应用和服务等方面作重点介绍。 一 、GPS连续运行站网和综合服务系统的发展 在全球地基GPS连续运行站(约200个)的基础上所组成的IGS(International GPS Service),是GPS连续运行站网和综合服务系统的范例。它无偿向全球用户提供GPS各种信息,如GPS精密星历、快速星历、预报星历、IGS站坐标及其运动速率、IGS站所接收的GPS信号的相位和伪距数据、地球自转速率等。这些信息在大地测量和地球动力学方面支持了无数的科学项目,包括电离层、气象、参考框架、精密时间传递、高分辨的推算地球自转速率及其变化、地壳运动等。 (1) IGS现在提供的轨道有三类:一是最终(精密)轨道,要在10—12天以后得到它,常用于精密定位;二是快报轨道,要在1天以后得到,它常用于大气的水汽含量、电离层计算等;还有一类是预报轨道。 关于对GPS星钟偏差方面的估计,目前只有两个IGS分析中心提供。IGS目前近200个永久连续运行的全球跟踪站中,使用的外部频率标准近70个,其中约30个使用氢钟,约20个使用铯原子钟,约20个使用铷原子钟,其余的使用GPS内部的晶体震荡器。 (2) IGS还提供极移和世界时信息。IGS公布的最终的每日极坐标(x,y),其精度为±01mas,快报的相应精度为±02mas。GPS作为一种空间大地测量技术,本身并不具备测定世界时(UT)的功能,但由于一方面GPS卫星轨道参数和UT相关,另一方面,也和测定地球自转速率有关,而自转速率又是UT的时间导数,因此IGS仍能给出每天的日长(LOD)值。IGS现在还能进一步求定章动项和高分辨率的极移(达每2小时1次,而不是现在的1天1次),后者主要源于IGS各观测站观测质量的提高,数据传输迅速和及时,以及数据处理方法的改进,并没有本质的改变,而前者却是技术上的一个跨跃。 (3) IGS提供的一个极为有用和重要的信息是IGS的那些连续运行站(跟踪站)的坐标、相应的框架、历元和站移动速度。前者精度好于1cm,后者精度好于1mm/y。IGS站坐标所采用的坐标参考框架是和IERS互相协调的。1993年末开始使用ITRF91,1994年使用ITRF92,1995年到1996年中期使用ITRF93,1996年中期到1998年4月一直使用ITRF94,1998年3月1日转而采用ITRF96,1999年8月1日开始IGS采用ITRF97。 (4) IGS在测定短期章动方面的新贡献。众所周知,地球自转轴在地球表面上的移动称为极移,而它在惯性空间中的运动称为岁差和章动。 GPS技术不能确定UT,而只能确定日长。同样这一原则也适用于章动,即GPS数据不能测定章动的经度和倾角,但能确定这些量的时间变率(对时间的导数)。基于这一原理,用了3年的每天的ψ和ε值的资料,估算短期章动项的章动振幅,并与VLBI结果作了比较。结论认为,就测定章动短周期项而言,GPS方法优于VLBI,而对超过1个月以上的长周期而言,VLBI较优。 由于对GPS技术的IGS作出了如此大的成绩和贡献,因此1999年9月各国的VLBI站和SLR站决定也组织类似于IGS的相应的IVS和IVRS。法国的DORIS和德国的PRARE也正在考虑成立类似模式的国际组织。力求使这类空间大地测量观测系统组织起来,提高效率、提高精度和可靠性。 就地区性的GPS连续运行站网和综合服务系统而言,发达国家也已做了很多这方面工作,取得了进展。在美国布设了GPS“连续运行参考站”(CORS)系统。它由美国大地测量局(NGS)负责,该系统的当前目标是(1)使美国各地的全部用户能更方便的利用它来达到厘米级水平的定位和导航;(2)促进用户利用CORS来发展GIS;(3)监测地壳形变;④求定大气中水汽分布;⑤监测电离层中自由电子浓度和分布。

截止1999年9月CORS已有156个站,而美国NGS宣布为了强化CORS系统,从现在起,以每个月增加3个站的速度来改善该系统的空间覆盖率。此外,CORS的数据和信息包括接收的伪距和相位信息、站坐标、站移动速率矢量、GPS星气、站四周的气象数据等,用户可以通过信息网络,如Internet很容易下载而得到。 英国建立的“连续运行GPS参考站”(COGPS)系统的功能和目标类似于上述CORS,但结合英国本土情况还多了一项监测英伦三岛周围的海平面相对和绝对变化的任务。英国的COGPS由测绘局、环保局、气象局、农业部、海洋实验室共同负责。目前已有近30个GPS连续运行站,今后的打算是扩建COGPS系统和建立一个中心,其主要任务是传输、提供、归档、处理和分析GPS各站数据。 日本已建成全国近1200个GPS连续运行站网的综合服务系统。目前它在以监测地壳形变、预报地震为主功能的基础上,结合气象和大气部门开展GPS大气学的服务。 二、 GPS应用于电离层监测 GPS在监测电离层方面的应用,也是GPS空间气象学的开端。太空中充满了等离子体、宇宙线粒子、各种波段的电磁辐射,由于太阳常在1秒钟内抛出百万吨量级的带电物,电离层由此而受到强烈干扰,这是空间气象学研究的一个对象。通过测定电离层对GPS讯号的延迟来确定在单位体积内总自由电子含量(TEC),以建立全球的电离层数字模型。 GPS卫星发射L1和L2。两个载波。由这两个载波可以削弱电离层对GPS定位的影响,或者说可以求定电离层折射。因为这一折射和载波频率有关。 当人们建立地区或全球电离层数字模型时,总是作简化的假定,所有自由电子含量都表示在一个单层面上,该面离地面高为H。这样的话,电子含量正可以用在接收机和卫星连线与此单层面交点(刺入点)处的电子含量Es表示,它可以视为E与刺入点处天顶距Z'的函数Ecos Z'=Es。可以将在球面上的电子浓度Es加以模型化,例如写成经纬度的球谐函数等,这方面有很多专家提出了各种模型。IGS提出了一种电离层地图的交换格式(10nosphere Map Exchange Format,IONEX—Format),它的作用是使基于各种理论和技术所获得的电离层地图能在统一规格的基础上进行综合和比较。电离层模型有各不相同的理论基础,而取得的数据来源的技术也不同,数据覆盖面也不完整,所以目前只能将IGS和全球各种TEC的图和GPS卫星讯号的差分码偏差(differential code biases—DCBS)用IONEX形式向全世界用户提供,下一步将通过比较,逐步联合起来。 三、 GPS应用于对流层监测 在GPS应用中,早期主要是轨道误差影响定位精度,而且早期的GPS基线相对来说比较短,高差不大,因此对对流层的研究没有给予很大的重视。直到近期由于GPS轨道精度大大提高后,对流层折射已成为限制GPS定位精度提高的一个重要障碍。假设一个高程基本为零的地区,接收机所接收的GPS讯号从天顶方向传来的话,其延迟可以达到2.2—2.6m这一量级,而2小时内这一延迟变化可达10cm不是少见的(所以IGS分析中心提供的对流层参数是用2小时间隔一次)。也由于这个实际情况,对流层折射要顾及其随机过程的变化来加以模型化。 在GPS应用于对流层研究中,IGS的快速轨道和预报轨道信息对于天气预报会起重大作用。此外,IGS通过德国GFZ的“IGS对流层比较和协调中心”提供的每2小时的对流层天顶延迟系列就象是控制点,对于区域性或局部性的对流层研究来说,可以起到对流层延迟绝对值的标定作用。 与地基GPS大气监测不同,星基或空基GPS掩星法测定气象的技术有覆盖面广,垂直分辨好,数据获取速度快的优点。这一技术的原理是将GPS接收机放在某一低轨卫星(LEO)或飞行器的平台上,该GPS接收机一方面起到对该卫星(或飞行器)精确定轨的作用,同时又应用GPS掩星技术起到大气探测器的作用。在1997年进行的GPS/MET研究项目,证实了这个设想是可行的。预定于2000年4月发射的CHAMP卫星要利用GPS掩星法进行全球对流层折射(包括大气可降水分)的测定。 在今后几年中,还有阿根廷的SAC—C,我国台湾的COS—MIC,这些LEO卫星都要用星载GPS来定轨和利用掩星法测大气。 今后利用星载GPS的气象和电子浓度截面数值,结合地面GPS站数据,作成层折图像提供使用。今后3年中GPS/MET项目研究还要进行6次,预计它将在天气预报、空间天气预报、气象监测方面做出巨大贡献。 四 、GPS作为卫星测高仪的应用 多路径效应是GPS定位中的一种噪音,至今仍是高精度GPS定位中一个很不容易解决的“干扰”。过去几年利用大气对GPS信号延迟的噪声发展了GPS大气学,目前也正在利用GPS定位中的多路径效应发展GPS测高技术,即利用空载GPS作为测高仪进行测高。它是通过利用海面或冰面所反射的GPS信号,求定海面或冰面地形,测定波浪形态,洋流速度和方向。通常卫星测高或空载测高测的是一个点,连续测量结果在反向面上是一个截面,而GPS测高则是测量有一定宽度的带,因此可以测定反射表面的起伏(地形)。据报告,试验时在空载平面安装2台GPS接收机,1台天线向上用于对载体的定位,1台天线向下,用于接收GPS在反射面上的讯号。美国在海上作了测定洋流和波浪的试验。丹麦在格凌兰作了测定冰面地形及其变化的试验。

1、GPS的最初用途

GPS最初就是为军方提供精确定位而建立的,至今它仍然由美国军方控制。军用GPS产品主要用来确定并跟踪在野外行进中的士兵和装备的坐标,给海中的军舰导航,为军用飞机提供位置和导航信息等。

2、GPS系统用途广泛

目前,GPS系统的应用已将十分广泛,我们可以应用GPS信号可以进行海、空和陆地的导航,导弹的制导,大地测量和工程测量的精密定位,时间的传递和速度的测量等。对于测绘领域,GPS卫星定位技术已经用于建立高精度的全国性的大地测量控制网,测定全球性的地球动态参数;用于建立陆地海洋大地测量基准,进行高精度的海岛陆地联测以及海洋测绘;用于监测地球板块运动状态和地壳形变;用于工程测量,成为建立城市与工程控制网的主要手段。用于测定航空航天摄影瞬间的相机位置,实现仅有少量地面控制或无地面控制的航测快速成图,导致地理信息系统、全球环境遥感监测的技术革命。

许多商业和政府机构也使用GPS设备来跟踪他们的车辆位置,这一般需要借助无线通信技术。一些GPS接收器集成了收音机、无线电话和移动数据终端来适应车队管理的需要。

3、多元化空间资源环境的出现

目前,GPS,GLONASS,INMARSAT等系统都具备了导航定位功能,形成了多元化的空间资源环境。这一多元化的空间资源环境,促使国际民间形成了一个共同的策略,即一方面对现有系统充分利用,一方面积极筹建民间GNSS系统,待到2010年前后,GNSS纯民间系统建成,全球将形成GPS/GLONASS/GNSS三足鼎立之势,才能从根本上摆脱对单一系统的依赖,形成国际共有、国际共享的安全资源环境。世界才可进入将卫星导航作为单一导航手段的最高应用境界。国际民间的这一策略,反过来有影响和迫使美国对其GPS使用政策作出更开放的调整。总之,由于多元化空间资源环境的确立,给GPS的发展应用创造了一个前所未有的良好的国际环境。

4、发展GPS产业

今后GPS将像目前汽车、无线电通信等一样形成产业化。美国已将广域增强系统WAAS(即将广域差分系统中的发送修正数据链转为地球同步卫星发送,使地球同步卫星也具有C/A码功能,形成广域GPS增强系统)计划发展成国际标准。我国目前也有一些单位生产车载GPS系统。为发展我国的GPS产业,武汉已经成立中国GPS工程中心。

5、GPS的应用将进入人们的日常生活

最近几年,越来越多普通消费者买得起的GPS接收器出现了。随着技术的进步,这些设备的功能越来越完善,几乎每月都有新的功能出现,但价格在下跌,尺寸也越来越小了。两三年前GPS设备还像艺术品一样令人望而却步,而现在消费者终于可以拥有一款梦想已久的GPS接收器了,还带有以前做梦也想不到的很多先进的功能。

消费类GPS手持机的价格从几百元到几千元不等,它们基本上都有12个并行通道和数据功能。有些甚至能与便携电脑相连,可以上传/下载GPS信息,并且使用精确到街道级的地图软件,可以在PC的屏幕上实时跟踪你的位置或自动导航。

GPS信号接收机在人们生活中的应用,是一个难以用数字预测的广阔天地,手表式的GPS接收机,将成为旅游者的忠实导游。尽管目前大多数人还不知道什麽是GPS,但有人预言,GPS将改变我们的生活方式。今后,所有运载器,都将依赖于GPS。GPS就象移动电话、传真机、计算机互联网对我们生活的影响一样,人们日常生活将离不开它。

GPS的性能指标--------------------------------------------------------------------------------1、卫星轨迹

这里有24颗GPS卫星沿六条轨道绕地球运行(每四颗一组),一般不会有超过12个卫星在地球的同一边,大多数GPS接收器可以追踪8~12颗卫星。计算LAT/LONG(2维)坐标至少需要3颗卫星。再加一颗就可以计算3维坐标。对于一个给定的位置,GPS接收器知道在此时哪些卫星在附近,因为它不停地接收从卫星发来的更新信号。

2、并行通道

一些消费类GPS设备有2~5条并行通道接收卫星信号。因为最多可能有12颗卫星是可见的(平均值是8),这意味着GPS接收器必须按顺序访问每一颗卫星来获取每颗卫星的信息。

市面上的GPS接收器大多数是12并行通道型的,这允许它们连续追踪每一颗卫星的信息,12通道接收器的优点包括快速冷启动和初始化卫星的信息,而且在森林地区可以有更好的接收效果。一般12通道接收器不需要外置天线,除非你是在封闭的空间中,如船舱、车厢中。

3、定位时间

这是指你重启动你的GPS接收器时,它确定现在位置所需的时间。对于12通道接收器,如果你在最后一次定位位置的附近,冷启动时的定位时间一般为3~5分钟,热启动时为15~30秒,而对于2通道接收器,冷启动时大多超过15分钟,热启动时为2~5分钟。

4、定位精度

大多数GPS接收器的水平位置定位精度在5m~10m左右,但这只是在SA没有开启的情况下。

5、DGPS功能

为了将SA和大气层折射带来的影响降为最低,有一种叫做DGPS发送机的设备。它是一个固定的GPS接收器(在一个勘探现场100km~200km的半径内设置)接收卫星的信号,它确切地知道理论上卫星信号传送到的精确时间是多少,然后将它与实际传送时间相比较,然后计算出“差”,这十分接近于SA和大气层折射的影响,它将这个差值发送出去,其他GPS接收器就可以利用它得到一个更精确的位置读数(5m~10m或者更少的误差)。

许多GPS设备提供商在一些地区设置了DGPS发送机,供它的客户免费使用,只要客户所购买的GPS接收器有DGPS功能。

6、信号干扰

要给予你一个很好的定位,GPS接收器需要至少3~5颗卫星是可见的。如果你在峡谷中或者两边高楼林立的街道上,或者在茂密的丛林里,你可能不能与足够的卫星联系,从而无法定位或者只能得到二维坐标。同样,如果你在一个建筑里面,你可能无法更新你的位置,一些GPS接收器有单独的天线可以贴在挡风玻璃上,或者一个外置天线可以放在车顶上,这有助于你的接收器得到更多的卫星信号。

7、物理指标

选购GPS设备时,大小、重量、显示画面、防水、防震、防尘性能、耐高温、耗电等物理指标都要考虑在内。

GPS接收器及其分类--------------------------------------------------------------------------------最常用的GPS接收器有如下两种:

1汽车导航仪

计算机和通信的发展使人们的生活更加快捷、轻松,汽车导航和移动办公已风靡全球,并逐渐成为现代社会中不可缺少的部分。在日本、美国等国家,为了方便用户,很多汽车制造商在车辆出厂时就装配了导航和移动办公设备。在我国,类似产品的研制工作刚刚起步不久。

汽车导航仪是集计算机、通信导航、地图信息为一体的高科技产品,通常它都具备笔记本PC的基本功能,可以方便地驳接网络、发送传真和数据通信;并且内置GPS接收器,提供GPS天线接口,装载定位导航软件,利用接收到的GPS卫星信号为车辆提供全天候、全时域位置信息,并可以在屏幕上显示当时车辆运行情况。用户可以预先自定义行进路线、路旁标记和航路点,保存预先设定的路线或已走过的路线,以便再次查询。通过查询电子地图,用户能了解某地区的地理环境和交通状况,增加对未来旅途的预测,当发现了一些原地图中没有的道路,可以通过“记录新路”来更新地图。

2GPS手持机

GPS手持机是利用GPS基本原理设计而成的,体积小巧、携带方便、独立使用的全天候实时定位导航设备。好的手持机必备的条件是:灵敏度高,存贮量大,外部接口齐全。

GPS手持机按用途可分为陆用型、空用型、海用型。陆用型GPS手持机一般没有内置地图,主要利用航路点记录,选择相应航路点可自动生成路线。内置天线使得机型小巧,它是应用最广的GPS设备;空用型提供全球空域图和地域图,灵敏度极高,适用于在高速行进的飞机中定位;海用型内置全球海图,超大屏幕,提供可固定在船体上的配套支架和天线。

如果你想购买一款GPS接收器,下面这些知识都是必要的。

GPS接收机可以根据用途、工作原理、接收频率等进行不同的分类:

1、按接收机的用途分类

1)导航型接收机

此类型接收机主要用于运动载体的导航,它可以实时给出载体的位置和速度。这类接收机一般采用C/A码伪距测量,单点实时定位精度较低,一般为+-25MM,有SA影响时为+-100MM。这类接收机价格便宜,应用广泛。根据应用领域的不同,此类接收机还可以进一步分为:

车载型——用于车辆导航定位;

航海型——用于船舶导航定位;

航空型——用于飞机导航定位。由于飞机运行速度快,因此,在航空上用的接收机要求能适应高速运动。

星载型——用于卫星的导航定位。由于卫星的速度高达7KM/S以上,因此对接收机的要求更高。

2)测地型接收机

测地型接收机主要用于精密大地测量和精密工程测量。这类仪器主要采用载波相位观测值进行相对定位,定位精度高。仪器结构复杂,价格较贵。

3)授时型接收机

这类接收机主要利用GPS卫星提供的高精度时间标准进行授时,常用于天文台及无线电通讯中时间同步。

2、按接收机的载波频率分类

1)单频接收机

单频接收机只能接收L1载波信号,测定载波相位观测值进行定位。由于不能有效消除电离层延迟影响,单频接收机只适用于短基线(<15KM〉的精密定位。

2)双频接收机

双频接收机可以同时接收L1,L2载波信号。利用双频对电离层延迟的不一样,可以消除电离层对电磁波信号的延迟的影响,因此双频接收机可用于长达几千公里的精密定位。

3、按接收机通道数分类

GPS接收机能同时接收多颗GPS卫星的信号,为了分离接收到的不同卫星的信号,以实现对卫星信号的跟踪、处理和量测,具有这样功能的器件称为天线信号通道。根据接收机所具有的通道种类可分为:

1)多通道接收机

2)序贯通道接收机

3)多路多用通道接收机

4、按接收机工作原理分类

1)码相关型接收机

码相关型接收机是利用码相关技术得到伪距观测值。

2)平方型接收机

平方型接收机是利用载波信号的平方技术去掉调制信号,来恢复完整的载波信号通过相位计测定接收机内产生的载波信号与接收到的载波信号之间的相位差,测定伪距观测值。

3)混合型接收机

这种仪器是综合上述两种接收机的优点,既可以得到码相位伪距,也可以得到载波相位观测值。

4)干涉型接收机

这种接收机是将GPS卫星作为射电源,采用干涉测量方法,测定两个测站间距离。

DABAN RP主题是一个优秀的主题,极致后台体验,无插件,集成会员系统
网站模板库 » “遥感在森林资源与规划方面的应用”论文资料

0条评论

发表评论

提供最优质的资源集合

立即查看 了解详情